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30 March 2006 PHY240C Lecture 1

Three Topics

• Consequences of electron-electron interactions.

• Magnetism

• Superconductivity

Schrieffer - Theory of Superconductivity
Office Hour: Tues. 2pm.
10 minute quiz the end of Thursday lecture.

Grade Breakdown

1. Quizzes - 30%

2. Midterm - 30%

3. Final Exam - 40%

1 Interactions Between Electrons

1.1 Models

H =
∑

i

(
− ~

2

2me
∇2

i

)
+
∑

i

Uion(ri) +
∑

i6=j

Ue-e(ri − rj) (1.1)

Uion(ri) = −Ze2
∑

m

|ri − Rm|−1
(1.2)

Ue-e(ri − rj) =
e2

|ri − rj |
(1.3)

Now we apply a new notation.

n(r) =
∑

i

δ(r − ri) (1.4)

Uion =

ˆ

dr Uion(r)n(r) (1.5)

Ue-e =
1

2

¨

drdr′ n(r)n(r′)Ue-e(r − r′) (1.6)

Ue-e =
4πe2

q2
Fourier Transform (Specific to 3D) (1.7)

Ue-e =
2πe

|q| (2D); ∼ ln|q| (1D) (1.8)

(NOTE: The motivated student should show the 3D result.) Diagonal terms vanish due to phase space
argument?

Ue-e =
1

2

¨

drdr′
∑

q,q′

n(q)e−iq·rn(q′)e−iq′·r′Ue-e(q
′′)e−q′′·(r−r′) (1.9)

δ(q + q′′) =

ˆ

dr e−i(q+q′′)·r (1.10)

Ue-e =
∑

q

n(q)n(−q)U(q) (1.11)
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30 March 2006 PHY240C Lecture 1

1.2 Second Quantization

• Creation operator: â†kσ (Metals, heavily doped semiconductors).

• Field operator: ψ̂†
σ(r) =

∑

k

φ∗k,σ(r)â†k,σ (insulator, metal oxides, lightly doped semiconductors).

• Principle of transcription: matrix elements of operators should be the same.

1.2.1 One Particle Operators

Ĥ1 =
∑

ℓ,ℓ′

〈ℓ H ℓ′〉 â†ℓ′ âℓ (1.12)

(Ĥ1 is a one particle second quantized operator. H is a first quantized operator)

〈
ℓ1 Ĥ1 ℓ2

〉
=
∑

ℓ,ℓ′

〈ℓ H ℓ′〉
〈
0 âℓ1 â

†
ℓ′ âℓâ

†
ℓ2

0
〉

(1.13)

∑

ℓ

âℓâ
†
ℓ2
|0〉 = δℓ,ℓ2 (1.14)

〈
ℓ1 Ĥ1 ℓ2

〉
= 〈ℓ1 H ℓ2〉 (1.15)
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04 April 2006 PHY240C Lecture 2

Review

• We are most interested in the interactions between electrons and the ions and the electron-electron
interaction.

• It is most physically reasonable to discuss the physics in terms of creation and annihilation operators.

• How do we go about doing this? The goal of Heisenberg is to produce the same observables as the first
quantized operators (get the same matrix elements).

1.2.2 Two Particle Operators

Ĥ(2) =
∑

ℓℓ′ℓ′′ℓ′′′

H
(2)
ℓℓ′ℓ′′ℓ′′′ â

†
ℓ â

†
ℓ′ âℓ′′ âℓ′′′ (1.16)

H
(2)
ℓℓ′ℓ′′ℓ′′′ =

¨

drdr′φ∗ℓ (r)φ
∗
ℓ′(r

′)H(2)(r − r′)φℓ′′(r)φℓ′′′(r
′) (1.17)

(ℓ refers to a generic quantum number)

1.3 Equivalent formulation using field operators

ψ̂(r) =
∑

k

φk(r)âk (1.18)

Ĥ(1) =

ˆ

dr ψ̂†(r)H(1)(r)ψ̂(r) (1.19)

(Motivated student can prove this.)

1.3.1 For the electron system

Ĥ =
∑

Hk,l,σa
†
k,σal,σ +

1

2

∑
Uklmna

†
k,σa

†
lσamσanσ (1.20)

Hkl ≡
ˆ

dr φ∗k(r)

(
− ~

2

2m
∇2 + Uion(r)

)
φl(r) (1.21)

Uklmn =

¨

drdr′φ∗k(r)φ∗l (r
′)Ue-e(r − r′)φm(r)φn(r′) (1.22)

• Intuition tells us that propagation does not cause spin to flip is reason why spins are the same in kinetic
term. Counterexample: spin in magnetic field. In heavier elements, spin-orbit coupling will flip the spin
w/o electron-electron interaction.

• Feynman diagram can be used to describe an interaction.

m, σ

k, σ

n, σ′

l, σ′

Uklmn
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04 April 2006 PHY240C Lecture 2

• Density interaction is a†a, not a†a†aa.

• Normal Ordering: all destruction operators should be moved to the right.

• If we calculate the effective mass of electrons coming from a photon, the effective mass is infinite, so we
do Renormalization.

• Imagine that the mass of the electron is infinite as well. When you absorb the infinity from the vacuum
fluctuations, the resulting mass is the one you observe.

• Vacuum fluctuations: Viewpoint is that as a photon is travelling there is a particle-antiparticle pair and if
we calculate the contributions to the mass, it is infinite. Electron’s effective energy and mass are infinity.
When combined with vacuum fluctuations then result is what we observe. Putting annihilation operators
on the right gets rid of these “ghost” particles.

2 Models for Electrons in Solids

2.1 Jellium Model

• Smear out the positive ions into a homogeneous background charge.

• Eigenstates are plane waves

φk,σ(r) =
1√
V

eik·rησ η↑ =

(
1
0

)
η↓ =

(
0
1

)
(2.1)

H(1) |φk,σ〉 = εk,σ |φk,σ〉 (2.2)
〈
φl H

(1) φk

〉
= δklεk (2.3)

Ĥ =
∑

kσ

εkĉ
†
kσ ĉkσ +

1

2V

∑

q

Ue-e(q)n̂(q)n̂(−q) (2.4)

=
∑

kσ

εkĉ
†
kσ ĉkσ +

1

2V

∑

q,k,k′

σ,σ′

Ue-e(q)ĉ†k−q,σ ĉ
†
k′+q,σ′ ĉk′,σ ĉk,σ (2.5)

Second term is Fourier transform of the interaction Hamiltonian (interaction between density waves). n(q)
is a density fluctuation of the gas with wavenumber q. (Claim High Tc superconductors have charge density
waves.) KNOW THIS HAMILTONIAN. Claim that four out of fifteen will need to know this for our orals!

n̂(q) =
∑

k

ĉ†k+qck n̂(r) = ψ̂†(r)ψ̂(r) (2.6)

(Motivated student can take field formulation to get second quantized formulation of the above equations).
First equation: we annihilate and create an electron with momentum difference q.

2.2 Blöch Functions

• Restore ionic structure.

• We introduce bands (denoted by index n) to the system.

ψ̂n,k,σ(r) (2.7)

• Momentum is conserved up to a reciprocal lattice vector G (crystal momentum is conserved).

6



04 April 2006 PHY240C Lecture 2

k, n

k − q, n′′

k′, n′

k′ + q + G, n′′′

q

Two more summation indices:

1. band index n

2. reciprocal lattice vector G

G = 0 direct G 6= 0 Umklapp (2.8)

2.3 Hubbard Model

• Anderson claimed it holds key for High Tc Superconductivity (they are metal oxides)

• Uses field operators.

• Suitable for localized orbitals: insulators, metal oxides (High Tc S.C.), lightly doped semiconductors

• Use Wannier states as our basis instead of Blöch functions.

• Most studied Hamiltonian of the last 20 years.

H(1) =

ˆ

dr φ∗i (r − Ri)

(
− ~

2

2m
∇2 + Uion(r)

)
φj(r − Rj) (2.9)

Biggest is when i = j, the diagonal term.

H(1) = ε
∑

i

c†i ci (2.10)

Assume energy is the same on every site since the atoms are identical.
Next biggest: i = j + δ, nearest neighbor.

H(1) = t
∑

〈i,j〉

c†i cj (2.11)

Physical meaning is that this term is the hopping term.

2.3.1 Two Particle Hamiltonian

The biggest term is the diagonal term.

H(2) = U
∑

n̂i,σn̂i,−σ (2.12)

Ĥ = t
∑

〈i,j〉,σ

ĉ†i,σ ĉj,σ + U
∑

i,σ

n̂i,σn̂i,−σ (2.13)

Can also consider

• Next nearest neighbor hopping t′

• Neighbor repulsions V .
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13 April 2006 PHY240C Lecture 3

Last Time

• Derived Hubbard Model, simplest model capturing interactions between electrons.

Additional terms

V
∑

ij

ninj
First(second) neighbor Coulomb interaction

(long-range portion of Coulomb dropped because of screening) (2.14)

t′
∑

ij
n.n.n.

c†iσcjσ Next nearest neighbor hopping (2.15)

2.3.2 High-Temperature Superconductors

Typical values for a high-Tc superconductor

t ∼ 0.5 eV U ∼ 5 eV (2.16)

t′ ∼ 0.1 eV V ∼ 1 − 2 eV (2.17)

What happens when we add disorder? (Example: La2−xSrxCuO4)

CuO Layer

La, Sr

Figure 1: Blue: Cu, Grey: O

Zhang-Rice claim that we view the chemically correct (more complicated) structure as a series of a single
type of site.
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13 April 2006 PHY240C Lecture 3

2.4 Perturbation Theory in U

|φ〉 = |FS〉 +
U

V
+
∑

k,k′,q

1

εk + εk′ − εk+q + εk′−q

c†k+qc
†

k′−q
ck′ck |FS〉 (2.18)

〈φ nk φ〉 =

nk

kf k

}
z

z = 1 − 1
4 ln 2 [U · ρ(εF )]

2
“Fermi step” (2.19)

1. Fermi distribution nk gets rounded

2. Fermi step is diminished (z < 1), but non-vanishing (for small U).

3. Finite T the step still exists?

4. Step in Fermi function translates to the strengths of the pole of the Greens function which in turn
represents the strength or amplitude of the quasi-particle interaction.

2.4.1 Limits of Perturbation Theory

1. U · ρ(εF ) ∼ 1

• Fermi step goes to zero.

2. 1D (previous results given for 3D)

〈nk〉 ∼ 2 [U · ρ(εF )] ln |k − kF | (2.20)

• Zero radius of convergence

Non-perturbative analysis is required.

2.4.2 Luttinger Theorem

Within radius of convergence of perturbation theory, volume of Fermi surface is unchanged.

⇒

Figure 2: An example of a deformation of a Fermi surface where the volume is unchanged

• Gives rise to zero sound (Oscillation of the Fermi surface).
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13 April 2006 PHY240C Lecture 3

2.5 Hartree Approximation

Represent the interactions as if the electrons propagate in the average field of the other electrons.

Ĥ =
∑

σ

ˆ

dr ψ̂†
σ(r)

[
− ~

2

2m
∇2 + Uion

]
ψ̂σ(r)

+
∑

σσ′

ˆ

drdr′ ψ̂†
σ(r)

〈
ψ̂†

σ′(r
′)ψ̂σ′(r′)

〉
ψ̂σ(r)Ue-e(r − r′)

(2.21)

We replaced ψ†(r′)ψ(r′) with its average (or mean-field). This makes the Hamiltonian quadratic (which can
be diagonalized). Is our solution self-consistent?

2.5.1 Steps

1. Assume a form for expectation value 〈ψ†ψ〉.

2. Diagonalize Ĥ.

3. Determine modified ψ.

4. Recalculate 〈ψ†ψ〉

5. Repeat from step 2.

This will make the theory self-consistent. Theories that are self-consistent or are mean-field are non-
perturbative.

2.6 Fock (exchange) Approximation

• Fock:
〈
ψ̂†

σ(r)ψ̂σ′(r′)
〉

• Ĥ is quadratic (good), but non-local (bad)

∑

k,k′,q

U(q)ĉ†k+q,σ ĉ
†
k′−q,σ′ ĉk′,σ′ ĉk,σ (2.22)

〈
ĉ†k+q,σ ĉk′,σ′

〉
= δk+q,k′δσ,σ′

〈
ĉ†
k′,σ′ ĉk′,σ′

〉
(2.23)

Remaining term

ĉ†
k′−q,σ′ ĉk,σ = ĉ†k,σ ĉk,σ (2.24)

Ĥ =
∑

k,σ

{
εk,σ −

∑

k′

U(k − k′)
〈
ĉ†
k′,σ ĉk′,σ

〉}
ĉ†k,σ ĉk,σ (2.25)

2.6.1 Hartree Term

U(q = 0)
∑

k

〈
ĉ†
k′ ĉk′

〉
= U(q = 0)Ne (2.26)

Shifts energy of every electron by the same amount.

• Turns out this number is canceled out by ionic contribution (Only true for simplest interaction problems).
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18 April 2006 PHY240C Lecture 4

Last Time

• Effects of the interaction

• Perturbation Theory

– For Strong interaction, Perturbation Theory is not valid.

– 1D: Breaks down for small interaction

• Approximate quartic interaction term of the Hamiltonian as a quadratic term times the expectation value
of the remaining quadratic terms (Hartree Approximation and Fock Approximation).

• Self-Consistent theories are good ways to go beyond perturbative approaches.

2.6.2 Hartree Term Cont.

Ĥ =
∑

k,σ


εk,σ −

∑

k′,σ′

U(k − k′)
〈
ĉ†
k′,σ′ ĉk′,σ′

〉

 ĉ†k,σ ĉk,σ (2.27)

∆εF
k,σ =

∑

k′,σ′

U(k − k′)
〈
ĉ†
k′,σ′ ĉk′,σ′

〉
(2.28)

Calculation of Fock energy shift for spherical FS.

∆εF
k,σ =

ˆ |k′|<kF

0

d
3
k

4πe2
∣∣k − k′

∣∣2 =
2kF e

2

π
F

(
k

kF

)
(2.29)

F (x) =
1

2
+

1 − x2

4x
ln

|1 + x|
|1 − x| (2.30)

The motivated student will show the above.

F (x)

x1

εF
k =

~
2k2

2m
− 2kF e

2

π
F

(
k

kF

)
(2.31)

Can find the effective mass by taking the derivative of the Fock energy with respect to k and evaluate at the
FS since all physical processes take place at the FS.

1

kF

∂εF

∂k

∣∣∣∣
kF

∼ 1

meff
=

1

m


1 +

c

2
ln

2∣∣∣1 − k
kF

∣∣∣


 (2.32)

Effective mass diverges logarithmically! meff → 0

• Okay to use Fock approximation away from Fermi surface

• Effective mass diverges logarithmically near the Fermi surface ⇒ Failure of Fock approximation
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18 April 2006 PHY240C Lecture 4

Correlations Beyond Hartree-Fock

Density-Density Correlator (Correlation Function)

Sσ,σ′(r, r′) =
V

Ne
〈n̂σ(r)n̂σ′(r′)〉 (2.33)

Reminder:

n̂σ(r, t) = ψ̂†
σ(r, t)ψ̂σ(r, t) (2.34)

n̂σ(q) =
∑

k

ĉ†k,σ ĉk+q,σ (2.35)

We wish to work in Fourier space.

Sσ(q) =
1

Ne
〈n̂σ(q)n̂σ(−q)〉 (2.36)

=
1

Ne

∑

k,k′

〈
ĉ†
k′,σ′ ĉk′+q,σ′ ĉ†k,σ ĉk−q,σ

〉
(2.37)

=
1

Ne

∑

k,k′

〈
ĉ†
k′,σ′ ĉk′+q,σ′ ĉ†k+q,σ ĉk,σ

〉
(2.38)

Consider case when q 6= 0. Only non-vanishing contribution comes from when k = k′.

S(q) = (−1)2
〈
ck+q,σc

†
k+q,σ

〉〈
c†k,σck,σ

〉
(2.39)

〈
ĉ†kĉk

〉
= f(εk) (2.40)

〈
ĉk+qĉ

†
k+q

〉
= 1 − f(εk+q) (2.41)

S(q) =
2

Ne

∑

k

f(εk) · [1 − f(εk+q)] (2.42)

q

k

k + q

Figure 3: Non-zero contribution is denoted by the shaded area

k + q must be outside the FS and k must be inside the FS.

• q → 0: S(q) → 0.

• q > 2kF : No more overlap, so we have S(q) = 1

• 0q < 2kF : S(q) = 3
5
|q|
kF

− 1
16

(
|q|
kF

)2

12
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S(r) = g(r) =





gHF
↑↓ (r) = 1

gHF
↑↑ (r) = 1 − 9

[
sin kF r − kF r cos kF r

(kF r)
3

]2 (2.43)

Within H-F(Hartree-Fock) approximation, the plane wave basis remains appropriate. Only the parameters
(εF

k , meff) change. (For the H-F approximation within the Jellium model, the radius of the Fermi sphere
remains constant due to Luttinger Theorem.)

gHF
↑↓

r r

gHF
↑↑

Exchange hole

Figure 4: Correlation function in the Hartree-Fock approximation

From the above, we see that correlations for unlike electrons are ignored in the HF approximation (i.e. there
no energy cost to put two electrons on the same site). Also, the correlations for like electrons show that
two electrons of the same spin cannot be near each other (Pauli). The oscillations in gHF

↑↑ were noticed by
Friedel. (RKKY)

gtrue
↑↓

r r

gtrue
↑↑

Bigger than HF

Figure 5: “True” Correlation function

For gtrue
↑↓ , the results for small r are not agreed upon. With regard to gtrue

↑↑ , the size of the exchange hole is
due to two things:

• Pauli principle

• Coulomb repulsion

Spin glasses are due to the fact that the interactions between spins are long range (greater than exponential).

2.7 Dynamical Correlations

S(q, t) =
1

Ne

∑

kk′σσ′

〈
ĉ†
k′,σ′(t)ĉk′+q,σ′(t)ĉ†k+q,σ(0)ĉk,σ(0)

〉
(2.44)

ĉ†k(t) = ĉ†keiεkt/~ (2.45)

13
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Last Time

• Finished discussion of effects of Fock term

• Discussed effects of correlations

• Described density-density correlation function (static).

– Hartree-Fock: opposite spin electrons do not see each other

– HF: like-spins cannot be close to each other (Pauli exclusion principle)

Dynamical Correlations Cont.

ĉ†k(t) = ĉ†keiεkt/~ (2.46)

S(q, t) =
1

Ne

∑

k

f(εk)[1 − f(εk−q)]ei(εk−εk+q)t/~ (2.47)

Only difference between static and dynamical correlations is a complex phase factor. Taking the Fourier
transform yields

ˆ ∞

−∞

eiωt = 2πδ(ω) (2.48)

S(q, ω) =
2π~

Ne

∑

k

f(εk)[1 − f(εk+q)] · δ (~ω − (εk+q − εk)) (2.49)

S 6= 0 only if ω = εk+q − εk, “Fermi’s Golden Rule”.

ω

q/kF

S(q, ω) = 0

S(q, ω) = 0
“two particle continuum”

1 2 3

Figure 6: In the shaded region, S(q, ω) 6= 0.

2.8 Response of Electrons to External Perturbation

Insert extra charges into your system, i.e. place ρext(r, t), and calculate response.

ρ(r, t) = ρext(r, t) + ρind(r, t) (2.50)

ϕ(r, t) =
1

ǫr
ϕext(r, t) (2.51)

∇2ϕ = −4πρ q2ϕ(q) = 4πρ(q) (2.52)

∇2ϕext = −4πρext q2ϕext(q) = 4πρext(q) (2.53)

(2.54)

14
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ρ(q) =
1

ǫr
ρext(q) (2.55)

1

ǫr
=
ρext + ρind

ρext
= 1 +

ρind

ρext
(2.56)

= 1 +
4π

q2
ρind

ϕext
(2.57)

ρind = −enind (2.58)

U = −eϕ (2.59)
ρind

ϕext
= e2

nind

U
(2.60)

1

ǫr
= 1 +

4πe2

q2
nind

U
(2.61)

4πe2

q2
is the Fourier transform of the Coulomb interaction.

n(r, t) =
〈
ψ ei(Ĥ+Ĥext)tn̂(r)e−i(Ĥ+Ĥext)t ψ

〉
(2.62)

If Ĥext = Ĥext(t), then

n(r, t) =

〈
ψ exp

[
i

ˆ t

−∞

Ĥext(t
′) dt′

]
eiĤtn̂(r)e−iĤt exp

[
−i

ˆ t

−∞

Ĥext(t
′) dt′

]
ψ

〉
(2.63)

The above formula is the “interaction representation”.

2.8.1 Linear Response

Expand the exponential to first order

n̂(r, t) = eiĤtn̂(r)e−iĤt (2.64)

n(r, t) =

〈
ψ

[
1 + i

ˆ t

−∞

Ĥext(t
′) dt′

]
n̂(r, t)

[
1 − i

ˆ t

−∞

Ĥext(t
′) dt′

]
ψ

〉
(2.65)

= n0 + nind (2.66)

nind(r, t) = i

ˆ t

−∞

dt′
〈
ψ
[
Ĥext(t

′), n̂(r, t)
]
ψ
〉

(2.67)

Ĥext(t
′) =

ˆ

dr′ Uext(r
′, t′)n̂(r′, t′) (2.68)

nind(r, t) = i

ˆ t

−∞

dt′
ˆ

dr 〈ψ [n̂(r′, t′), n̂(r, t)] ψ〉U(r′, t′) (2.69)

Π(r − r′, t− t′) = 〈ψ [n̂(r′, t′), n̂(r, t)] ψ〉 (2.70)

Next, since we note that we have a convolution, we immediately go to Fourier space since the convolution is
a product.

nind(q, ω) = Π(q, ω) · Uext(q, ω) (2.71)
nind

U
= Π(q, ω) (2.72)

1

ǫr
= 1 +

4πe2

q2
· Π(q, ω) (2.73)

Kubo-Greenwood discovered that the commutator-type correlation function gives the linear response to
external perturbations.
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Π is a retarded correlator. There are no restrictions in space, but t′ < t in time. Let us consider the Fourier
Transform.

Π(q, ω) = i

ˆ t

−∞

〈ψ [n̂(q, t′), n̂(−q, t)] ψ〉dt′ (2.74)

= i

ˆ 0

−∞

dt eiωt 〈ψ [n̂(q, t′), n̂(−q, 0)] ψ〉dt′ (2.75)

“−∞”: Adiabatic switching.

lim
δ→0

Uexte
δt

∣∣∣∣
t∈[−∞,0]

(2.76)

Re

ˆ

ei(ω−∆ε)tU(t) → 1

ω − ∆ε+ iδ
(2.77)

Turning on the interaction slowly pushes the pole off the real axis.
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Last Time

• Studying collective behavior of interaction electrons

• Determined generic formula of the linear response of the system.

• Correlation functions of the system will capture the response of the system more appropriately.

• Commutator correlation function

• Derived for specific case but is generally true.

2.9 Models of Dielectric Functions

2.9.1 Thomas-Fermi Approximation

∇2U(r) = 4πe [ρext(r) + ρscr(r)] = 4πeρ(r) (2.78)

ρ(r) = −en(r) n(r) ≡ Number density (2.79)

(Note: U is potential energy.) Assume that locally the system is a free electron system.

n =
k3

F (r)

3π2

[
2 · 4

3

(
kF

2π

)3

π = n0

]
(2.80)

Introduce a space-dependent Fermi momentum as a result of the test charge. Since the test charge is a
spatially varying quantity, it is reasonable that its effect on the Fermi momentum is also spatially variable.

EF =
k2

F (r)

2m
+ U(r) (2.81)

k3
F (r) = [2m(EF − U(R))]3/2 (2.82)

n(r) = n0 ·
(

1 − U(r)

EF

)3/2

(2.83)

n0 =
k3

F,0

3π2
(2.84)

∇2U(r = 4πe

[
ρext + en0 − en0

(
1 − U(r)

EF

)3/2
]

(2.85)

ρscr(r) = en0 − en0

(
1 − U(r)

EF

)3/2

(2.86)

When U = 0, we have ρscr = 0. When U 6= 0, we have a non-trivial screening charge. Since we are performing
a small perturbation, we can expand the term containing U(r) in the parentheses, yielding

∇2U(r) = 4πeρext +
6πn0e

2

EF
U(r) (2.87)

Transforming to Fourier space yields

−q2U(q) = 4πe[ρext(q) + ρscr(q)] (2.88)

(
−q2 − q2TF

)
U(q) = 4πeρext(q) q2TF =

6πn0e
2

EF
(2.89)

U(q) = −4πeρext(q)

q2 + q2TF

(2.90)

ǫr(q) =
ρext

ρext + ρscr
=

(q2 + q2TF)U(q)/(−4πe)

q2U(q)/(−4πe)
=
q2 + q2TF

q2
(2.91)

Note: Kondo problem is that of magnetic impurities.
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2.9.2 Special Case: Point Charge

ρext(r) ≡ Q · δ(r) (2.92)

ρext(q) = Q · const (2.93)

U(r) =

ˆ

d
d
q

(2π)d
eiq·r−4πe ·Q

q2 + q2TF

(2.94)

= −4πeQ

(2π)3
· 2π
ˆ ∞

0

dq q2
ˆ 1

−1

dxeiqrx 1

q2 + q2TF

(2.95)

= −eQ
π

ˆ ∞

0

dq
q2

q2 + q2TF

2 sin qr

qr
(2.96)

= −2eQ

π

1

r

ˆ ∞

0

dq
q

q2 + q2TF

sin qr (2.97)

= −eQ
π

1

r

ˆ ∞

−∞

dq
q

q2 + q2TF

sin qr (2.98)

We wish to do a contour integral since we have poles at ±iqTF.

U(r) = −eQ
r

e−qTFr 1

qTF
=

(
EF

6πe2n

)1/2

= rTF (2.99)

The motivated student will calculate the induced charge density and calculate the integral of the charge
density and find that it equals

Total screening charge ≡
ˆ

d
d
r ρscr(r) = −Q (2.100)

(Derivation assumed that our electrons were free fermions. Thus, our work is not valid for a dielectric or an
insulator.) Next level: Fock approximation ln(k−kF ) in ε(k). This non-analyticity DESTROYS exponential
decay, gives rise to

U(r) ∼ cos 2kF r

r3
Friedel Oscillations (2.101)

2.9.3 Self-Consistent Theory

1

ǫr
= 1 +

4πe2

q2
nind(q, ω)

Uext(q, ω)
(2.102)

U(q, ω) =
1

ǫr
Uext(q, ω) (2.103)

1

ǫr
= 1 +

4πe2

q2
nind(q, ω)

U(q, ω)

1

ǫr
(2.104)

ǫr = 1 − 4πe2

q2
nind(q, ω)

U(q, ω)
(2.105)

Both ǫr and 1/ǫr represent a response to the system. 1/ǫr is the response to an external perturbation. ǫr is
the response to any kind of potential.
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Last Time

• System’s response will be related to its correlation

• Referred to as retarded since they require times from negative infinity

• Thomas-Fermi approximation: Assume perturbation is not too strong. Can view the electron locally as
being a Fermi system with the parameters (Fermi momentum) being spatially dependent. Fermi energy
must remain constant since the system is in equilibrium.

EF =
k2

F (r)

2m
+ U(r)

• For case of a single point charge: Get induced screening cloud with exponential decay.

• 1/ǫr is the response to external perturbations.

• ǫr is the response to all of the perturbations.

Question

Why do we work in second quantization?
It is very natural to work in this formulation. Many of the physical processes result in changes in particle
number (absorption of a photon by a solid). It is first quantized functions times bookkeeping. Will later
learn that superconducting state will be very hard to write in first quantized form. It is very hard to mix
wavefuctions that describe different particle numbers.

Self-Consistency Screening cont.

1

ǫr
= 1 + U0

nin

Uext
U0 =

4πe2

q2
(2.106)

U0 is the bare Coulomb interaction.

1

ǫr
= 1 + U0Π(q, ω) (2.107)

ǫr = 1 − U0
nind

U
= 1 − U0Π̃(q, ω) (2.108)

1 + U0Π =
1

1 − U0Π̃
(2.109)

Π =
Π̃

1 − U0Π̃
(2.110)

1

ǫr
= 1 + U0Π = 1 + UeffΠ̃ (2.111)

Ueff =
U0

1 − U0Π̃
= U0 + U0Π̃U0 + · · · (2.112)

Looks like a geometric series. Indeed, one can visualize this as

+ +

U0 U0 U0U0U0U0 Π̃ Π̃Π̃

+ · · ·

Viewing as an effective interaction and viewing as an effective correlation are physically equivalent.
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Effective Interaction as a geometric series:

• Originally called the Random Phase Approximation(RPA)

• David Bohm and David Pines

• First attempt to take a series and sum it up to infinite order in the interaction.

• Contains high order (∞) powers of U0.

• Non-perturbative result.

• Need U0Π̃

• It is a subset. Need to convince audience that this is the most important subset of perturbative corrections.
It is conceivable that another subset will be more important. For example, in superconductivity we have
a solution which is similar to RPA but yields a different set of diagrams.

Now, let us find the correlation function Π̃.

Π̃ = i

ˆ 0

−∞

dt eiωt 〈[n̂(q, t), n̂(−q, 0)]〉 (2.113)

Assume free electron gas

Π̃ = i

ˆ 0

−∞

dt eiωt 1

V

∑

k,σ

{
f(εk)[1 − f(εk+q)]ei(εk−εk+q)t − f(εk+q)[1 − f(εk)]ei(εk−εk+q)t

}
(2.114)

= i

ˆ 0

−∞

dt
1

V

∑

k,σ

ei(ω−(εk+q−εk))t[f(εk) − f(εk+q)] (2.115)

=
1

V

∑

k,σ

f(εk) − f(εk+q)

ω − (εk+q − εk) + iδ
(2.116)

Plugging this back into our formula for the dielectric constant yields

ǫRPA
r (q, ω) = 1 − 4πe2

q2
· 2

V

∑

k

f(εk) − f(εk+q)

ω − (εk+q − εk) + iδ
(2.117)

Memorize the above formula!

ǫr = ǫ′r + iǫ′′r (2.118)

ǫ′r = 1 − 4πe2

q2
2

V
P
∑

k

f(εk) − f(εk+q)

ω − (εk+q − εk) + iδ
(2.119)

ǫ′′r =
4π2e2

q2
· 2

V

∑

k

[f(εk) − f(εk+q)]δ(ω − (εk+q − εk)) (2.120)

Principle Part(P): (Look this up in Boas and Arfken to refresh)

f(x) =
1

x
= P ( 1

x ) + iπδ(x) (2.121)

ˆ ∞

−∞

dx
1

x
g(x) =

ˆ −ǫ

−∞

+

ˆ ∞

ǫ

dx
1

x
g(x) + iπg(0) (2.122)
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Last Time

• Linear response

• Studying model dielectric functions

• Thomas-Fermi approach

• Difference between 1/ǫ and ǫ. 1/ǫ is response to external perturbation. ǫ is response to total potential.

• Determined ǫ for a point charge.

ǫ′r = 1 − 4πe2

q2
2

V
P
∑

k

f(εk) − f(εk+q)

ω − (εk+q − εk) + iδ
(2.123)

2.9.4 Limiting Cases

The order of the limits is important. Many of these response functions are not analytic, thus the order
is important and physical circumstances can aid in determining the proper order. Example: a photon is
wiggling electrons at very high frequency but low momentum. In contrast, the phonons are wiggling at low
frequency but high momentum.

1. ω → 0, q → 0

As q → 0, we Taylor expand f(εk) − f(εk+q)

ǫ′r = 1 − 4πe2

q2
2

V

∑

k

−∂f
∂ε (εk+q − εk)

−(εk+q − εk)
(2.124)

= 1 − 8πe2

q2

ˆ

d
3
k

(2π)3
∂f

∂ε
(2.125)

Convert to energy integral.

ε =
k2

2m
→ k =

√
2mε (2.126)

dk =
√

2m
1

2
√
ε

dε (2.127)

∂f

∂ε
= −δ(ε− εF ) (2.128)

ǫ′r = 1 +
8πe2

q2
4π

8π3

ˆ ∞

0

dε
√

2m
1

2

1√
ε

2mε · δ(ε− εF ) (2.129)

= 1 +
e2

q2
· 4

π
·
√

2 ·m3/2

ˆ ∞

0

dε
√
ε · δ(ε− εF ) (2.130)

= 1 +
e2

q2
· 4

√
2

π
m3/2 · √εF = 1 +

4me2kF

πq2
(2.131)

ǫTF = 1 +
q2TF

q2
q2TF =

6πe2n0

εF
=

6πe2
k3

F

3π2

k2
F

2m

=
4me2kF

π
(2.132)

2. q → 0, ω → 0

ǫ′r = 1 − 4πe2

q2
· 2

V

∑

k

f(εk) ·
[

1

ω − (εk+q − εk)
− 1

ω − (εk+q + εk)

]
(2.133)
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Shifted k → k − q in second term.

ǫ′r = 1 − 4πe2

q2
· 2

V

∑

k

f(εk) · 2(εk+q − εk)

ω2 − (εk+q − εk)2
(2.134)

= 1 − 4πe2

q2
· 2

V

∑

k

f(εk) ·
2
[
2k·q

2m + q2

2m

]

ω2
(2.135)

In the denominator, we let q → 0, resulting in no k or q dependence. Next, in the numerator k·q = kq cos θ
and
´

dk k · q = 0.

ǫ′r = 1 − 4πe2

q2
· q2

mω2
· 2

V

∑

k

f(εk) (2.136)

Thus, we have

ǫ′r = 1 −
ω2

pl

ω2
ω2

pl =
4πe2n

m
(2.137)

where ωpl is the plasma frequency! Next, recall

1

ǫr
= 1 +

4πe2

q2
nind

Uext
(2.138)

If ω of Uext is ωpl, the system will produce a huge response (plasma oscillations). This is a homogeneous
excitation with the overall center of charge for the positive charges and negative charges oscillate out of
phase.

3. ω → 0, q finite

ǫ′r = 1 +
q2TF

q2

[
1

2
+

1

4x
(1 − x2) ln

|x+ 1|
|x− 1|

]
x ≡ q

2kF
(2.139)

As q → 0 (x → 0) the above reduces to Thomas-Fermi results. First calculated by Lindhard. Note:
Non-analytic at x ∼ 1. If we FT back to real space, we find the screening cloud nind to be

nind(r) = Q · cos 2kF r

r3
(2.140)

This differs from Thomas-Fermi as the screening cloud oscillates in density. Because of the non-analyticity,
the large q behavior influences the large r behavior. A consequence of the Fermi surface is that response
functions are oscillatory with a power law envelope. Decays exponentially?
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4. Low dimensions

ǫr(ω = 0,q) = 1 +
q2TF

q2
F

(
q

2kF

)
(2.141)

x

F (x)

1

1D

2D

3D

Figure 7: Fermi function in 1(red), 2(black) and 3(blue) dimensions

1/ǫ diverging is a good way of capturing excitations of the system. ǫ diverging is a good way of finding
instabilities of the system. The natural excitations of the system will be bosons (electron-hole pairs).
The instability manifests itself by the nature of the excitations from electronic to bosonic. Example:
Superconductivity.

5. “Nesting” Everything we have done previously assumed that the Fermi surface is spherical, i.e. that
everything is isotropic or that there is no dependence on the angle. What happens if the Fermi surface
is anisotropic?

q

Figure 8: Example of nesting for a rectangular Fermi surface

The phase space for a given q where the energy difference is small (∼ 0) is much larger when we move
away from a spherical Fermi surface.

ǫr ∼
∑ 1

εk+q − εk
large (2.142)

ǫr can diverge.

23



02 May 2006 PHY240C Lecture 8

n > 1

n < 1

n = 1

kx

ky

Figure 9: Fermi surface for the 2D Hubbard model at less than (red), equal to (black), and greater than
(blue) half-filling

Nesting in 2D Hubbard model represents instability of anti-ferromagnetism. Reference for Nesting by
Ruralds-Virosztek “Nested Fermi-Liquid Theory”.
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Last Time / Announcement

• No class next Tuesday. Replacement class 5/16 from 12:30-2:00pm.

• Looked at general formula given by RPA theory.

• Studied small q behavior and found Thomas-Fermi result

• Studied small ω behavior and recovered behavior of plasmas.

2.9.5 Effect of finite relaxation time

Previously assumed in RPA that wave functions were plane waves. What happens if there is disorder? The
plane waves will cease to be eigenstates. Let us add an exponential decay to the plane waves.

ĉpk(t) = ĉpke−iεkt ⇒ ĉpke−iεkt · e−t/2τ = ĉpke−i(εk−
i

2τ )t (2.143)

Shift frequency to complex plane. For holes, we find

ĉpk(t) = · · · = ĉpke−i(εk+ i
2τ )t (2.144)

Holes can be viewed as particles moving backwards in time. Applying to RPA formula

ǫr = 1 − 4πe2

q2
2

V

∑

k

f(εk) − f(εk+q)

ω − (εk+q − εk) + i
τ

(2.145)

εk+q is the energy of an electron, and εk is the energy of the corresponding hole. RPA is describing the
creation of a particle-hole pair. i/τ is referred to as the “self-energy” Σ of the Green’s function.

2.9.6 Connection in RPA

Maxwell’s equation

E = −∇ϕ (2.146)

E = −iqϕ (2.147)

eE = iq(−eϕ) = iqU (2.148)

−ieq · E = q2U (2.149)

The dielectric constant becomes

ǫr = 1 − 4πe2

q2
nind

U
= 1 + i

1

ǫ0

ρind

q · E (ρ = −en)
1

4πǫ0
extra factor (2.150)

Conductivity is related to currents. Continuity equation relates density to current.

∇ · j(r, t) +
∂ρ(r, t)

∂t
= 0 (2.151)

iq · j(q, ω) − iωρ(q, ω) = 0 (2.152)

Solving for the density

ρ =
q · j
ω

(2.153)

Recall Ohm’s Law

j(q, ω) = σ(q, ω)E(q, ω) (2.154)
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Inserting into our equation for ǫr yields

ǫr(q, ω) = 1 + i
1

ǫ0

σ(q, ω)

ω
ǫ(q, ω) = ǫ0 + i

σ(q, ω)

ω
(2.155)

Now recall that

ǫr(q, ω) = 1 − 4πe2

q2
Π̃(q, ω) = 1 − 1

ǫ0

e2

q2
Π̃(q, ω) (2.156)

σ(q, ω) =
iωe2

q2
Π̃(q, ω) (2.157)

In the finite ω, q → 0 limit we have calculated Π̃ for the plasmons

Π̃(q, ω) =
neq

2

mω
(2.158)

σ(ω) = lim
q→0

σ(q, ω) =
inee

2

mω
(2.159)

This is the conductivity for a free electron. If the electron lifetime is finite, then ω → ω + i
τ

σ(ω) =
nee

2

m

1

ω + i
τ

(2.160)

In the limit where ω → 0, we find

σ(ω = 0) =
nee

2τ

m
Recovered Drüde form (2.161)

For general q, ω

ρ =
1

ω
q · j n =

1

ω
q · jn (2.162)

The conductivity becomes

σ =
iωe2

q2

(
− i

V

)
ˆ ∞

0

dt eiωt 〈[n(q, t), n(−q, 0)]〉 (2.163)

=
e2

ω

1

V

ˆ ∞

0

dt eiωt 〈[j(q, t), j(−q, 0)]〉 Kubo-Greenwood (2.164)

Full formula is

σ =
e2

ω

1

V

ˆ ∞

0

dt; eiωt 〈[j(q, t), j(−q, 0)]〉 +
ine2

mω2
(2.165)

Where does the second term come from?

Ĥ =
p̂2

2m
→ (p̂ − e

c Â)2

2m
=

p̂2

2m
+

e

2mc

[
p̂ · Â + Â · p̂

]
(2.166)

v = i[Ĥ, r̂] =
p̂

m
+

e

mc
Â (2.167)
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Last Time

• Studied effect of finite relaxation time

• Determined relationship between ǫ and σ in general.

ǫ(q, ω) = ǫ0 + i
σ(q, ω)

ω

• What happens when we add this effect to RPA.

• In the q → 0, ω → 0 limit, we get the Drüde form for the conductivity.

• Related conductivity to current-current correlation function (Kubo-Greenwood).

2.10 Response to Magnetic Perturbation

In a magnetic field

ε(H) = ε(H = 0) − 1

2
gµBσ · H (2.168)

σ is the spin of the electron. µB is the Bohr magneton. g is the gyro-magnetic ratio. Response of the system
(susceptibility) is

χ ≡ M

Hext
=

i

~
µ0

ˆ ∞

0

dt eiωt 〈[m(q, t),m(−q, 0)]〉 (2.169)

Correlation function of the quantity the external field couples to.

χ(0, 0) = χ0 =
1

2
g2µ2

Bρ(εF ) Pauli magnetic susceptibility (2.170)

ρ(εF ) is the DOS at the Fermi Surface,
mkF

2π2
(3D). The susceptibility in the RPA approximation is

χRPA =
χ0

1 − U · ρ(εF )
(2.171)

A magnetic response is enhanced because of an electric interaction. Stoner instability is when χ→ ∞ as U
increases. Stoner criterion indicates the onset of a ferromagnetic instability. 〈M〉 6= 0

〈M〉 = 0 〈M〉 6= 0

0 1

Uρ(ε
F
)

Hartree approximation: Allow different densities for up and down electrons.

〈
ψ†
↑ψ↑

〉
6=
〈
ψ†
↓ψ↓

〉
(2.172)

Energies of up and down spin electrons will shift differently. Systems that want to be antiferromagnetic have
the same Stoner relation but not at q = 0, instead at q 6= 0. χ(qAF) → ∞
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n↑,n↓

Uρ(ε
F
)

n↑

n↓

1

2

1

Figure 10: Electron density versus Uρ(ε
F
)

N(ε)

ε
F

ε

↓

↑

Figure 11: Density of States for up and down spin electrons with (solid black) and without (dashed red)
applied magnetic field

3 Scattering Experiments

Previously looked at what happens when you expose a system to a large external perturbation.

3.1 Electron Scattering

Interaction: Coulomb

V =
∑

R,rα

e · eαV (R − rα) = e

ˆ

d
d
r V (R − r)ρ(r) (3.1)

Fermi’s Golden Rule

Pi→f =
2π

~
|Vf i|2δ(Ef − Ei − ~ω) (3.2)

〈tfef V tiei〉 = Vf i (3.3)

1. electron matrix element

〈kF V (R − r) ki〉 = V (k)e−ik·r k = kf − ki (3.4)

2. target/ion matrix element

Vf i = eV (k)

ˆ

d
d
r e−ik·r 〈i ρ̂(r) f〉 (3.5)
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Insert eiĤte−iĤt before and after the density operator, yielding

〈i ρ(r) f〉 · δ(Ef − Ei − ~ω) =

ˆ ∞

−∞

dt eiωt 〈i ρ(r, t) f〉 (3.6)

Pi→f =
e2|V (k)|2

~2

ˆ

d
d
r

ˆ

d
d
r′
ˆ ∞

−∞

dt eiωte−ik·(r−r′) · 〈i ρ(r, t) f〉 〈f ρ(r, 0) i〉 (3.7)

Summing over all final states yields

P total =
e2|V (k)|2

~2

ˆ

d
d
r

ˆ

d
d
r′
ˆ

dt eiωte−ik·(r−r′) · 〈i ρ(r, t)ρ(r, 0) i〉 (3.8)

Response to scattering experiments is similar to linear response. We always measure correlation functions.
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Last Time

• Considered response to a magnetic perturbation.

χRPA =
χ0

1 − U · ρ(εF )
(3.9)

• Started discussing scattering experiments

• Calculated the total probability of going from the initial state to the final state. Learned it was related
to a correlation function.

• Correlation function is not retarded and does not have a commutator.

• Fluctuation Dissipation Theorem (FDT): There is a numerical factor coth kBT/~ω relating the retarded
commutator correlation function with the simple correlation function.

• If you will study disordered systems (glasses), there is a violation of the Fluctuation Dissipation Theorem.

Electron Scattering Cont.

What you measure is not the transition probability but the scattering cross-section σ.

incoming flux · dσ =
∑

f

Pi→f (3.10)

incoming flux =
~ki

m
(3.11)

Final state phase space
1

(2π)3
d

d
kf =

1

(2π)3
k2

f dkf dΩf =
1

(2π)3
me

~2
kf dεf dΩf (3.12)

d
2
σ

dεf dΩf
=
kf

ki

m2
e

(2π)3
e2

~5k4
Sρρ(k, ω) Differential cross section (3.13)

Differential cross section is a geometric factor times the density-density correlation function.

Sρρ(k, ω) =

ˆ

dtdt′ dr dr′ eiω(t−t′)−ik·(r−r′) 〈ρ(r, t)ρ(r′, t′)〉 (3.14)

3.2 Neutron Scattering

If you bombard a charged particle with an electron, it will interact strongly with the particle. The electron
will not penetrate deep into the sample and are better suited for surface probes. Neutrons do not interact
strongly with the particle and will probe deeply into the sample.

3.2.1 Interaction with the nuclei via short range forces

V =
∑

α

V (R − rα) = a

ˆ

d
d
r δ(R − r)n(r) (3.15)

The δ function describes a contact interaction. n(r) is the density of nucleons.

d
2
σ

dεf dΩf
=
kf

ki

m2
n

(2π)3
a2

~5
Snn(k, ω) (3.16)

e/k2 → a, the scattering length and ρ(r, t) → n(r, t). The first term in Snn(k, ω): the Bragg peaks at ω = 0,
i.e. elastic scattering.
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3.2.2 Interaction with the nucleon spin

The neutron spin interacts with the nucleon spin via a dipole interaction.

V = 2µ
∑

α

Si(R)Vij(R − r)Mγ(r) (3.17)

Vij(r) = − 1

4π
∇i∇j

1

r
→ k̂i · k̂j (3.18)

d
2
σ

dεf dΩf
=
kf

ki

(µnmn)2

(2π)3~5
k̂i · k̂jSMiMj

(k, ω) (3.19)

i and j denote the polarization directions.

3.3 Light Scattering

d
2
σ

dεf dΩf
=

1

4

√
ǫ

(2π)3

(ωf

c

)4

Sǫǫ(k, ω) (3.20)

Sǫǫ is the correlation function of the fluctuations of the dielectric constant. In an isotropic liquid, Sǫǫ ∼ Snn.
In a liquid crystal, Sǫǫ consists of many contributions.

3.4 Magnetic Scattering of Neutrons

1. No thermal motion T = 0

S(k, ω) = A

ˆ ∞

−∞

dt eiωt
∑

R,R′

〈
e−ik·R(0)eik·R′(t)

〉
= δ(ω)

∑

G

δ(k − G) (3.21)

If your system is at T = 0, then when neutrons are scattered their energy and momentum will be conserved
up to a reciprocal lattice vector. We will have peaks in the directions of the reciprocal lattice vectors.
(NOTE: Fermi’s Golden rule only applies when the interaction strength is small. If the interaction is
strong, then we can have multiple scattering events.)

2. With thermal motion T 6= 0. The ions are moving at finite temperatures. R(t) = Ri + ui(t). The ui(t)
form phonons, characterizing ionic displacements from equilibrium position.

S(k, t) =
∑

R,R′

eik·(R−R′)
〈
e−ik·u(R,0)eik·u(R,t)

〉
(3.22)

Theorem:
〈
e−iÂeiB̂

〉
= e−

1
2 (〈(Â−B̂)2〉−[Â,B̂]) (3.23)

This is true only in systems where the expectation value is taken for Hamiltonians which are quadratic

in Â and B̂ and if
[
Â,
[
Â, B̂

]]
. If and only if these two criteria are satisfied, then the above relation is

true. Both criteria are satisfied for phonons.

u(R, t) =
∑

q

1√
2NMωq

(
aqei(q·R−ωqt) + a†qe−i(q·R−ωqt)

)
(3.24)

We have to produce:

u(R, t) − u(R, 0) =
∑

q

1√
2NMωq

[
âq

(
ei(q·R′−ωqt) − eiq·R

)
+ â†q

(
ei(q·R−ωqt) − e−iq·R′

)]
(3.25)

[u(R, t) − u(R, 0)]
2

=
1

2NM

∑

q

1

ωq

(2 − 2 cos θRR′)(â†qâq + âqâ
†
q) + non-diag. (3.26)

θRR′ = ωqt+ q · (R − R′) (3.27)
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Can ignore non-diagonal terms since we are taking an expectation value and

Ĥ =
∑

q

ωqâ
†
qâq (3.28)

Thus, the expectation value of all non-diagonal terms is zero.

[û(R′, t), û(R, 0)] =
1

2NM

∑

q

1

ωq

{
[âq, â

†
q]eiθRR′ + h.c.

}
=

2i

2NM

∑

q

1

ωq

sin θRR′ (3.29)

Total exponent:

=
k2

2NM

∑

q

1

ωq

{(2 〈nq〉 + 1)(1 − cos θRR′) − i sin θRR′} (3.30)

The θRR′ terms depend on time. We will expand the time dependent piece from the exponential. We
will keep the 1 in the exponential and expand the cos and sin.

S(k, t) =
∑

RR′

{
eik·(R−R′) +

k2

2NM

∑

q

1

ωq

[
〈nq + 1〉 eiωqtei(q−k)·(R−R′)

+ 〈nq〉 e−iωqte−i(q+k)·(R−R′)
]}

e−2W

(3.31)

where

e−2W = exp

{
− k2

2NM

∑

q

1

ωq

(2 〈nq〉 + 1)

}
(3.32)

The Fourier Transform of the density autocorrelator factor is called the structure factor and it is given
by

S(k, ω) = e−2W

{
δ(ω)

∑

G

δ(k − G)

+
k2

2NM

[
∑

q

1

ωq

δ(ω − ωq)
∑

G

δ(k − q − G) 〈nq + 1〉

+
1

ωq

δ(ω + ωq)
∑

G

δ(k + q − G) 〈nq〉
]}

+ two phonon processes

(3.33)

The first term yields Bragg peaks. The second term describes one phonon emission and absorption. e−2W

is the Debye-Waller factor. The zero-point fluctuations scatter the neutrons. The sum is logarithmically
divergent in 2D. This suppresses the scattering correlation function to zero. Mermin-Wagner Theorem:
In d = 2 the zero point fluctuations destroy the correlation function S(k). NO LATTICE in d = 2. There
are no elastic lattices in two dimensions.
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Question

What happens if the magnetic susceptibility from the Stoner criterion becomes negative? We can only believe
the Stoner criterion up to divergence. The system becomes unstable and develops a finite magnetization.

3.5 Neutron Scattering Experiment

Spallation Neutron Sources produce neutrons without radiation.

ki filter

target

kf filter

two choppers

Figure 12: Schematic of a neutron scattering experiment where the energy is measured via the “time of
flight” technique.

Scan for ω, k(≡ kout − kin).

k

ω

spin waves Sin 6= Sout

acoustic phonons Sin = Sout

optical phonons

4 Total Energy of the Electron Gas

E = 〈Ĥ〉 (4.1)

Natural length scales:

rs =
r̄s
a0

a0 =
~

2

me2
4

3
πr̄3s =

V

N
(4.2)
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a0 is the radius of s orbit in Hydrogen. r̄s is the space per electron. When rs is large, the system is dilute.
When rs is small, the system is dense. When rs is large, the dominant contribution to come from the
potential/interaction term. When rs is small, the dominant term is from the kinetic term.

1. If there is no interaction, we have

Ekin =
∑

k

k2

2m
= 2

V

(2π)3

ˆ

d
3
k
k2

2m
=
V

π2

~
2

2m

k5
F

5
= N

3

5
εF (4.3)

2. Hartree: cancels the electron-ion interaction

EH =
2.21

r2s
Ry (4.4)

3. Fock:

εk → εk −
∑

q

U(q)εk−q (4.5)

EHF =
2.21

r2s
− 0.91

rs
(4.6)

4. RPA approximation singles out diagrams which form rings

(a) Dense case, rs small

E =
2.21

r2s
− 0.91

rs
− 0.096 + 0.62 ln rs + O(rs) (4.7)

=
2.21

r2s

[
1 + a1rs + a2r

2
s + a3r

2
s ln rs · · ·

]
(4.8)

This is a power series in positive powers of rs and is expected to be valid for small rs

(b) Dilute case, rs large

Start with interaction (put ~ = 0). To optimize the repulsive energy, electrons will form a lattice.
(Wigner crystal (WX))

Figure 13: Optimal Wigner crystal, a triangular lattice.

EWX = c
∑

ij

1

|rij |
= −1.8

rs
Ry (4.9)

⇒ EWX = −1.8

rs
+

3.0

r
3/2
s

= −1.8

rs

[
1 + a1r

−1/2 + a2r
−1
s + · · ·

]
(4.10)
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Expansion in negative increasing powers of rs.

There is a phase transition when moving from small rs to large rs. The Wigner crystal is an insulator.

E

rs

HF

WX

Phase transition

ρ

T

n small (insulator)

n large (metal)

?

Figure 14: Left: Energy versus rs. Right: Resistivity versus temperature.

HF WX
rs

0
38electron gas

?

Figure 15: Phase diagram in 2D. Possibilities for the unknown phase in the middle include stripes or
electronic microemulsions

35



18 May 2006 PHY240C Lecture 13

Last Time

• Neutrons pick up the structure of the system and phonon peaks as well.

• Neutrons have a weight comparable to the ions. Electrons are so much lighter that you cannot simulta-
neously satisfy momentum and energy conservation with phonons.

• Acoustic phonons have no gap.

• Phonons in metals also have acoustic behavior.

• Energy of electron gas in small and high density limit.

5 Fermi Liquid Theory

• Developed by Landau in the early forties.

• Started out as a phenomenology but became very powerful.

• Pursuit of a new type of small parameter in the problem of strong interactions.

Basic question: Why can the dense, strongly interacting fermion gas (like the electrons in metals) be
described as more or less the free electrons only with changed mass, etc. ?
Phenomonology: We accept this fact as a basis.

1. The states are still characterized by a momentum quantum number p.

2. The interaction only changes parameters: m→ m∗.

ε =
p2

2m∗
(5.1)

3. n(p) still has a jump at the Fermi surface ε = εF .

n(p)

pF p

z

where z is the “pole strength of the Green’s function.” Also, the Fermi volume remains unchanged
(Luttinger Theorem).

4. 1-4 define the Landau quasi-particles. The effect of strong interaction is captured through the parameters
m∗ and z. The remaining interaction is weak.

5. Lifetime of the quasi-particles is long.

1

τ(ε)
∼ ε2 (ε = E − EF ) (5.2)
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6.

F = E − µN = F0 +
∑

p

(εp − µ)δnp +
1

2V

∑

pp′

fpσ,p′σ′δnpσδnp′σ′ + O((δn)3) (5.3)

F0 results when the interaction is zero. δnp is the small fluctuation or variations in occupation number of
the quasi-particle caused by the interactions. The interaction is weak because the δn’s are hypothesized
to be small.

Parametrization:

1.

fpσ,p′σ′ = δσσ′fs
pp + σσσ′′ · σσ′′σ′fa

pp′ (5.4)

s stands for symmetric. a stands for anti-symmetric.

• No spin-orbit interaction, would be relevant for heavy elements.

• No crystalline anisotropies

2. All p, p′ have a magnitude ≈ pF .

fs,a
pp′ =

1

N(0)

∞∑

ℓ=0

F s,a
ℓ Pℓ(cos θ) (5.5)

N(0) = ρ(εF ) =
m∗pF

π2~3
(3D) (5.6)

We want to calculate the particle current in two ways. Equating them will give a constraint on the F ’s.
Continuity equation:

d

dt
np =

∂np(r, t)

∂t
+ ∇rnp · ṙ + ∇pnpṗ = 0 ṙ = vp = ∇pεp ṗ = −∇rεp (5.7)
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Last Time

• Knowing that the interactions between electrons are strong, we capture these strong interactions by
forming quasi-particles (characterized by m∗ and z).

• The quasi-particles interact weakly.

Fermi Liquid Theory Cont.

Recall

dnp

dt
=
∂np

∂t
+ ∇rnp · ṙ + ∇pnp · ṗ = 0 ṙ = ∇pεp ṗ = −∇rεp

Also

np(r, t) = n0
p + δnp(r, t) (5.8)

∂tδnp(r, t) + vp · ∇rδnp(r, t) −∇pn
0
p ·
∑

p′

fpp′∇rδnp′(r, t) = 0 (5.9)

Recall ∇np = −vp
∂n0

∂ε . Thus, the last two terms can be written

∇r ·



vp


δnp −

∑

p′

fpp′

∂n0

∂εp
δnp′






 (5.10)

The terms in the braces must be the current jp since by the continuity equation ∂tδnp + ∇r · j = 0

J =
∑

p

j̃p =
∑

p

δnpvp −
∑

pp′

vpfpp′

∂n0

∂εp
δnp′ (5.11)

=
∑

p

δnpvp −
∑

pp′

vp′fpp′

∂n0

∂εp′

δnp (5.12)

=
∑

p

δnp


vp −

∑

p′

fpp′

∂n0

∂εp′

vp′


 =

∑

p

δnpjp (5.13)

• Eqn. (5.10): δnp induces other fluctuations with amplitude δnp′ .

• Eqn. (5.13) vp current experiences/induces other current vp′ . The second term in (5.13) is called drag
current or back flow.

5.1 Transport in Fermi Liquid

Insert an extra electron into the Fermi Liquid with momentum p. We calculate the total current in two
different ways.

1. If effects of the crystal are disregarded (i.e. the system is Galilean invariant), then

J =
p

m
(5.14)

2. J after a while will be given by our jp

J =
p

m
=

p

m∗
−
∑

p′

fpp′

∂n0

∂εp′

p′

m∗
(5.15)

=
p

m∗
+

p

m∗

∑

p′

fpp′z · δ(εp − µ) cosϑ (5.16)
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ϑ is the angle between p and p′

p

m
=

p

m∗

(
1 −
ˆ

dΩ cosϑ
∑

ℓ

F s
ℓ Pℓ(cosϑ)

)
F = zN(0)f (5.17)

=
p

m∗

(
1 +

1

3
F s

1

)
(5.18)

The δ(εp′ −µ) forces the sum over p′ to be an angular integral over the Fermi Surface. Thus, the effective
mass ratio is

m∗

m
= 1 +

1

3
F s

1 (5.19)

Thus, a measurement of m∗/m gives F s
1 . This is a non-perturbative results. F s,a

ℓ can be > 1, as long as
the system is a Fermi-liquid. Formula will be true until we hit a phase transition!
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• Because of the interactions, the effective mass of the particles increases.

m∗

m
= 1 +

1

3
F s

1

• If the interaction is completely isotropic, m∗ = m (F s
1 = 0).

• In terms of momentum exchange, the Coulomb interaction is anisotropic.

• Effective mass can decrease (superconductivity)

Other similar calculations yield

Compressibility ? =
1 + F s

0

1 + 1
3F

s
1

(5.20)

Normal sound velocity

(
c

c0

)2

=
1 + F s

0

1 + 1
3F

s
1

(5.21)

We have two equations and two unknowns (F s
0 and F s

1 ). We have no predictive power yet. Landau predicted
zero sound, which is related to F s

0 . Landau theory now has predictive power and is falsifiable.
Let us go back to the continuity equation (summing over all p).

∂δn

∂t
+ ∇r




∑

p

vp


δnp − ∂n0

∂εp

∑

p′

fpp′δnp′






 = 0 (5.22)

In Fourier space

δnp(r, t) = δnpei(k·r−ωt) (5.23)

(v · k − ω)δnp − v · k∂n
0

∂εp

∑

p′

fpp′δnp′ = 0 (5.24)

Recall
∂n0

∂εp
= −zδ(εp − µ). Let us consider the case when

δnp = −δ(εp − µ)ν(ϑ, ϕ) (5.25)

ϑ and ϕ describe the angle between p and k. It follows that

(v · k − ω)ν + v · k
ˆ

dΩ
∑

ℓ

F s
ℓ (ϑ′)ν(ϑ′) = 0 (5.26)

The normal sound of the system is a density fluctuation.

ũ =
ω

|k| velocity of non-isotropic sound (5.27)

|v| = vF is the Fermi velocity.

s =
ũ

vF
(5.28)

Let us rewrite our previous result in terms of s.

(s− cosϑ)ν(ϑ) = cosϑ

ˆ

dΩ
∑

ℓ

F s
ℓ (ϑ′)ν(ϑ′) (5.29)

v(ϑ) ∝

cosϑ

s− cosϑ
(5.30)
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Question: Can s be chosen such that the LHS = RHS? We assume that only F s
0 is large, which yields

s

2
ln
s+ 1

s− 1
− 1 =

1

F s
0

(5.31)

In 3He this anisotropic sound “zero sound” was indeed observed. Normal sound vn.s. =
1√
3
vF . The ex-

perimental confirmation is that people in fermionic systems observed sound velocities that were profoundly
different from the expected and Landau’s prediction was the only “game in town” to account for the change
in normal sound.

5.2 Spin-Dependent Case

χ

χ0
=

1 + 1
3F

s
1

1 + F a
0

(5.32)

This formula is of analogous form as the Stoner criterion (RPA). F a
0 → −1 is the equivalent of the Stoner

criterion. This yields a magnetic instability (onset of ferromagnetism). K. Bedell (foremost expert in
ferromagnetism) worked out the relationship between DMFT and Fermi-liquid theory (see Phys. Rev. Lett.
from past few years). The numerator comes from the density of states.

(
N(0) = m∗pF /2π

2
)

Values for 3He: F s
0 ∼ 10, F s

1 ∼ 6 and F a
0 ∼ −0.67.

Question: How do we measure m∗?

1. RH =
1

nec
to get value for n

2. σ =
ne2τ

m
· 1

1 + ω2τ2
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6 Theory of Superconductivity

• Observed in 1911 by Kammerlimph Onnes (Leiden)

ρ

T

Hg

4

• 1957: Bardeen, Cooper and Schrieffer

6.1 Insights

1. Isotope effect Tc ∼ 1√
M

(1952-3) Serin et. al.

2. Total absence of scattering: electrons formed single quantum state. Every classical liquid has a finite
viscosity (resistivity). The effect that the electrons are showing no viscosity (resistivity) is an inherently
quantum phenomena. Only a single quantum state is unable to scatter off itself.

3. Macroscopic (even double) occupation of a quantum state is prohibited by Pauli.

Cooper: PAIR the electrons → form bosons.

4. Pairing explains

• Gap in specific heat

C

T

e−∆/T

Tc

∆: pair binding energy

• Resistivity = 0 explained

To make resistivity finite one has to BREAK the pair.

• Tunneling

I

V

∆/e
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Question: How can phonons bind repulsive electrons?
The answer is retardation.

e- e-

positively polarized channel

optimal e- path

1. Electron 1 (e−1 ) positively polarizes the channel

2. Polarization remains long after electron 1 is gone.

3. Electron 2 (e−2 ) can lower its energy by retracing e−1 ’s channel.

6.2 Microscopic Theory

1. Two electrons (Cooper 1956) in the presence of a Fermi surface.

k

−k

Only ǫk > 0 states are available.

ψ(r1, r2) = ϕq(ρ)eiq·R (6.1)

q ≡ CM momentum. Let us consider only q = 0.

ψ(r1, r2) =
∑

k

akeik·r1e−ik·r2 (6.2)

The Hamiltonian is

〈ψ H ψ〉 =
∑

k

2ǫka
†
kak +

∑

kk′

Vkk′a†kak′ (6.3)

The first term is the kinetic energy. The second describes an attractive interaction.

Ĥ |ψ〉 = E |ψ〉 ⇒ (E − 2ǫk) ak =
∑

k′

Vkk′ak′ (6.4)

The interaction is

Vkk′ =

{
−|V | 0 < ǫk, ǫk′ < ωD

0 otherwise
(6.5)

The coefficients are

ak =

V
∑

k′

ak′

E − 2ǫk
(6.6)

∑

k

ak = V
∑

k′

ak′

∑

k

1

E − 2ǫk
(6.7)
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Since the sums over the ak’s are the same, we find

1 = V
∑

k

1

E − 2ǫk
≡ V · φ (6.8)

φ

E

repulsive 1
V

attractive 1
V

Figure 16: The red line indicates a positive or repulsive 1
V . The green line indicates a negative or attractive

1
V . The difference between dotted lines is 2ǫk.

For attractive V , a single eigenvalue becomes negative. Thus, a BOUND state is present for arbitrary
weak attraction.

1

|V | = −N(0)

ˆ ωD

0

dǫ
1

w − 2ǫ
=
N(0)

2

ˆ 2ωD

0

dǫ
1

ǫ+ |w| =
N(0)

2
ln

2ωD + |w|
|w| ≈ N(0)

2
ln

2ωD

|w| (6.9)

|w| = 2ωD exp

( −2

N(0)V

)
(6.10)

This is inherently non-perturbative since there is no Taylor expansion for e−1/x
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Last Time

• From the isotope effect Bardin concluded that phonons play an important role in superconductivity.

• Since the resistivity is so low the electrons do not experience scattering and the electrons stay in a
particular quantum state.

• How can many electrons stay in the same quantum state when this is forbidden by the Pauli principle?
We pair the electrons and they become bosons!

• Arbitrarily weak attraction can form a bound state.

Microscopic Theory Cont.

We neglected exchange!

2. Full many body calculation (following Schrieffer)

Ĥred =
∑

ks

ǫksn̂
f
ks +

∑

kk′

vkk′ b̂†
k′ b̂k b†

k′ = c†k↑c
†
−k↓ ǫk ≡ εk − µ (6.11)

• Ĥred keeps only q = 0 in U
∑

k,k′,q

c†
k′−q

c†k+qck′ck. This is down by a factor of 1/N (bad).

• The ground state will be occupied by N bosons, b̂†b̂ will bring out a factor of N .

Ĥred =
∑

k

2ǫkb̂
†
kb̂k +

∑

kk′

vkk′ b̂†
k′ b̂k (6.12)

Ĥ seems to be quadratic and hence diagonalizable. However, our bosons are hard core bosons.
[
b̂k, b̂

†
k′

]
= δkk′ [1 − (nk↑ + n−k↓)] (6.13)

(
b̂†k

)2

= 0 (6.14)

The k is a quantum number, but it is not the momentum of the boson. The k reminds us that the boson
is composed of two electrons with momentum k and −k.

6.3 Variational Approach

Coherent state representation for bose-fields

|ψ〉 =
∏

k

egk(â†

k
+â-k) |0〉 (6.15)

b is a hard core boson, thus we have

|ψ〉 = N
∏

k

(
1 + gkb̂

†
k

)
|0〉 Variational wave function (6.16)

The normalization is given by

〈ψ ψ〉 = N2
∏

k

(1 + g2
k) (6.17)

Thus, the wave function becomes

|ψBCS〉 =
∏

k

1 + gkb̂
†
k

(1 + g2
k)1/2

|0〉 =
∏

k

(uk + vkb̂
†
k) |0〉 (6.18)
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where

uk =
1

(1 + g2
k)1/2

vk =
gk

(1 + g2
k)1/2

u2
k + v2

k = 1 (6.19)

The ground state energy is

EGS = 〈ψBCS|Hred|ψBCS〉 =
∑

k

2ǫkv
2
k +

∑

kk′

vkk′ukvkuk′vk′ (6.20)

The second term is given by
〈
0 (uk′ + vk′ b̂k′)(uk + vkb̂k)vkk′ b̂†

k′ b̂k(uk′ + vk′ b̂†
k′)(uk + vkb̂

†
k) 0

〉
(6.21)

We have to assure that there are no electrons with momentum k′. We wish to minimize the energy with
respect to gk. Using u2

k + v2
k = 1

u2
k =

1

2
(1 + ak) (6.22)

v2
k =

1

2
(1 − ak) (6.23)

Minimizing with respect to a
(

∂E
∂a = 0

)
and noting ukvk = 1

2 (1 − a2
k)1/2, yields

EGS =
∑

k

ǫk(1 − ak) +
∑

kk′

vkk′

1

2
(1 − a2

k)1/2 1

2
(1 − a2

k′)1/2 (6.24)

∂EGS

∂ak
= 0 = −

∑

k

ǫk + 2 · 1

2

∑

k′

vkk′

1

2
(1 − a2

k′)1/2 · 2 · 1

2

−ak
(1 − a2

k)1/2
(6.25)

∆k ≡
∑

k′

vkk′

1

2
(1 − a2

k′)1/2 (6.26)

ǫk = ∆k

ak
(1 − a2

k)1/2
(6.27)

(1 − a2
k) =

∆2
k

ǫ2k
a2
k (6.28)

a2
k =

(
1 +

∆2
k

ǫ2k

)−1

(6.29)

From this, we can get a self-consistent equation for ∆k.

∆k = −1

2

∑

k′

vkk′(1 − a2
k′)1/2 (6.30)

= −1

2

∑

k′

vkk′


1 − 1

1 +
∆2

k′

ǫ2
k′




1/2

(6.31)

= −1

2

∑

k′

vkk′

(
∆2

k′/ǫ2k′

1 + ∆2
k′/ǫ2k′

)1/2

(6.32)

= −1

2

∑

k′

vkk′

∆k′

Ek′

Ek =
√
ǫ2k + ∆2

k (6.33)

vkk′ =

{
V 0 < |ǫk|, |ǫk′ < ωD

0 otherwise
(6.34)

∆kk′ =

{
∆ 0 < |ǫk|, |ǫk′ < ωD

0 otherwise
(6.35)
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∆ = −V
∑

k′

∆

2(ǫ2
k′ + ∆2)1/2

(6.36)

1 = |V | ·N(0)

ˆ ωD

−ωD

dǫ

2(ǫ2 + ∆2)1/2
= |V |N(0) ln

2ωD

∆
(6.37)

∆ = 2ωD exp

( −1

N(0)|V |

)
(6.38)

This is similar to Cooper’s formula, but the 2 is not there. This is a many body effect.
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We found

u2
k =

1

2

(
1 +

ǫk√
ǫ2k + ∆2

)
v2
k =

1

2

(
1 − ǫk√

ǫ2k + ∆2

)
(6.39)

Thus the energy difference is

∆EGS =
1

2
N(0)∆2 = −1

2
N(0)ω2

D exp

(
− 2

N(0)|V |

)
(6.40)

∆ ∼ 1 K, N(0) ∼ 1
ǫF

∼ 1
104 K . Thus, ∆EGS ∼ 10−3 K. ∆EGS ∼ 10−7EF . First principles calculations

cannot pick up such minute differences.

∆EGS =
1

8π
H2

c Hc = 2[πN(0)]1/2∆ (6.41)

6.4 Quasi-particle Excitations

How do we create an excitation?

1. Take away a Cooper pair with (p,−p).

∆E1 = −2ǫpv
2
p − 2

[
∑

k

vpkukvk

]
upvp = −2ǫpv

2
p + 2∆upvp (6.42)

2. Add electron with p.

∆E2 = ǫp (6.43)

The total energy change is

∆E1 + ∆E2 = ǫp(1 − 2v2
p) + 2∆upvp (6.44)

u2v2 =
1

4

(
1 − ǫ2

ǫ2 + ∆2

)
=

1

4

∆2

E2
(6.45)

ukvk =
1

2

∆k

Ek

(6.46)

∆E1 + ∆E2 = ǫp · ǫp
Ep

+ ∆ · ∆

Ep

(6.47)

∆E1 + ∆E2 = Ep =
√
ǫ2p + ∆2 (6.48)

Ep

p

∆

pF

When we break a Cooper pair, we create a particle with p and a second one with −p and the creation energy
for each is ∆. Thus, the energy for breaking a pair is 2∆. From this we see that the binding energy of a
Cooper pair is 2∆.
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6.4.1 Particle number expectation value

〈nk〉 ≡ v2
k (6.49)

= 〈ψBCS nk ψBCS〉 =
〈
0 (uk + vkb̂k)b̂†kb̂k(uk + vkb̂

†
k) 0

〉
(6.50)

v2
k =

1

2

(
1 − ǫk

Ek

)
(6.51)

nk is smooth. There is no jump at the Fermi surface (z = 0). This a non-Fermi liquid system.

nk

k

1

kF

6.4.2 One particle (quasi-particle) states

ĉ†p↑ |ψBCS〉 = ĉ†p↑

∏

k

(uk + vkb̂
†
k) |0〉 (6.52)

= upĉ
†
p↑

∏

k6=p

(uk + vkb̂
†
k) |0〉 ≡ up |ψ†

p↑〉 (6.53)

ĉ−p↓ |ψBCS〉 = −vpĉ†p↑
∏

k6=p

(uk + vkb̂
†
k) = −vp |ψ†

p↑〉 (6.54)

Two different ways of creating a quasi-particle with momentum p that are spin-up. Both require energy Ep.
The Hilbert space of BCS Hamiltonian consists of 2D degenerate subspaces. Small perturbations will couple
to a linear combination of these eigenstates. (= “diagonalize H”)

6.4.3 Bogoliubov-Valatin Transformation

γ̂†p↑ = upĉ
†
p↑ − vpĉp↓ γ̂†p↑ |ψBCS〉 = |ψ†

p↑〉 (6.55)

The reverse transformation is

ĉ†p↑ = upγ̂
†
p↑ + vpγ̂−p↓ (6.56)
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6.4.4 Calculation of Measurable Quantities

1. Hc(T ) Critical Field

H2
c (T )

8π
= FN (T ) − Fs.c.(T ) (6.57)

Hc(T )

Hc(0)

(
T

Tc

)2

1.0

1.0

∼ 1 −
(
T

Tc

)2

2. Specific heat

ln
C(T )

γTc

Tc/T

1

1

10−1

10−2

The specific heat is gapped, as expected.

For T > 0, we assumed

fk =
1

eβEk + 1
⇒ ∆(T ) (6.58)
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3. NMR relaxation rate

HI·S = A
∑

kk′

a∗k′ak

{
Iz

(
c†k′↑ck↑ − c†k′↓ck↓

)
+ I+c

†
k′↓ck↑ + I−c

†
k′↑ck↓

}
(6.59)

The term in the braces is {· · · } = Î · Ŝ. For the specific case of superconductivity

c†k′↑ck↓ + c†−k↑c−k′↓ = (ukuk′ + vkvk′)
[
γk′↑γk↓ + γ†−k↑γ−k′↓

]
+ (ukuk′ − vkvk′)

[
γk′↑γ−k↑ + γ†k↓γ−k′↓

]

(6.60)

The second term is called a pair breaking term. It does not contribute below energies < ∆ (ωNMR ≪ 2∆).
The transition rate is from Fermi’s Golden rule

1

T1(s)
= 2π|A|2|a|4

∑

kk′

[fk(1 − fk′) − fk′(1 − fk)] δ(Ek′ − Ek − ω)·

1

2

(
1 +

ǫkǫk′ + ∆k∆k′

EkEk′

)

= 2π|A|2|a|4N2(0)

ˆ ∞

∆

dE

(
1 +

∆2

E(E + ω)

) E(E + ω)ω ·
(
− ∂f

∂E

)

(E2 − ∆2)1/2[(E + ω)2 − ∆2]1/2

(6.61)

For the normal state, we have

1

T1(n)
=

1

T1(s,∆ = 0)
= #

ˆ ∞

0

dE ω

(
− ∂f

∂E

)
= ω · #f(0) = ω · #1

2
(6.62)

The ratio is

T1(n)

T1(s)
= 2

ˆ ∞

∆

dE
(E(E + ω) + ∆)2

(
− ∂f

∂E

)

(E2 − ∆2)1/2((E + ω)2 − ∆2)1/2
(6.63)

In the limit as ω → 0, we have

T1(n)

T1(s)
= 2

ˆ ∞

∆

dE
E2 + ∆2

E2 − ∆2

(
− ∂f

∂E

)
(6.64)

Factors:

(a) DOS → 1
E2−∆2

(b) Coherence terms → 2

DOS → ln divergence of integral. ωNMR cuts it off.

1

T1
∼ ln

∆

max(ωNMR, ωZeeman)
(6.65)
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TN (T )

TS(T )

T

Tc

3.0

1.0

1.0

0.2

Hebel-Schlicter peak

4. Ultrasonic attenuation

Basic process: the phonons are absorbed by the electrons of the matrial.

α(s)

α(n)
=

ˆ ∞

∆

dE
E2 − ∆2

E2 − ∆2

(
− ∂f

∂E

)
(6.66)

αS(T )

αN (T )

T/Tc

1.0

1.0

0.0

0.2

The coherence factors eliminate the DOS log singularity.
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