
Recent	Developments	in	FORC-based	

Magnetic	Modeling

Luman Qu UC	Davis

Thomas	Schrefl Danube	U.

Gergely Zimanyi	 UC	Davis

1. Spin	Wave	

Renormalization	of	Finite	

Element	Modeling	of	

Magnetic	Reversal	for	

FORC	applications

2. Time	dependent	FORC	

analysis



Finite	Element	Micromagnetism:

Fluctuations	modify	parameters	

Finite	element	simulations	are	

the	standard	for	high	quality	

micromagnetic modeling.	Such	

modeling	is	the	basis	for	many	

FORC	simulations	as	well.

But:	what	parameters	to	use?

*	Microscopic,	from	ab initio?

*	Experimental,	from	

measurements?

*	Thermally	reduced?

These	differ	from	each	other	

by	the	different	classes	of	

fluctuations	they	includeNd2Fe14B:	Schrefl 2015



Fluctuations	reduce	Ms(T)	and	K(T)	

from	their	T=0	values

Figure

J. F. Herbst: R,Fe«B materials

the R-Fe exchange is indirect and likely mediated for the

most part by the rare-earth 5d states as discussed in Sec.
IV.A. 1. Atomic calculations (e.g., Herbst and Wilkins

1979) show that the 4f radial matrix elements (r )&& are
less than 1 A, quite small compared to the R-R separa-

tions in RzFe, 4B (&3 A in Table II). Hence direct ex-

change between R spins is negligible, and the R-R ex-

change can be expected to be significantly weaker than

the Fe-Fe and R-Fe interactions. This point has been

emphasized by many authors, including Buschow

(1986a), Radwanski (1986a), Belorizky et al. (1987), and
Radwanski and Franse (1987). Belorizky et al. (1988)
have estimated the R-R interaction for several rare-earth

intermetallic series from data in both the ordered state

and the paramagnetic regime and concluded that the in-

direct R-R exchange is also very likely mediated by the

rare-earth Sd electrons.

40

1. Molecular-field model

More specific information can be obtained by analyz-

ing the temperature dependence of the magnetization

with a phenomenological molecular-field model. In the

form employed by Fuerst et al. (1986) and H.-S. Li,
Zhang, and Dang (1988), separate molecular fields for the

R and Fe components are written as

HR( T)=H+ d [2n R~pR( T)+ 14n Rppp( T)],
Hp(T) =H+d [14npppp(T)+2nRppR(T)] .

(4)

H is the applied field, pR and p„arethe R and Fe ionic

moments, and d =N~p—~p/2 with X~ Avogadro'

ber, p the density, and A the R2Fe,„Bformula weight (d
converts the moment per R2Fe,4B unit in p~ to gauss).
The molecular-field coe%cients nRR, nR„,and n„„(di-
mensionless as defined here) describe the R-R, R-Fe, and
Fe-Fe magnetic interactions, respectively. A Brillouin

function is assumed to govern the temperature depen-

dence of each moment:

PR(»=PR(0»JIPBPR(0) HR(»/ka T]

pp( T)=p p(0)Bs [p~p„(0)Hp( T) /k~ T] .

(6)
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pR', ,' and pp(0) are the zero-temperature moments, J is(0&

the total angular momentum of the R 4f shell, and Sp
the Fe spin. The free-ion moment can be used for (0)PR
(=g m Table V), and pp(0)

—=gpSp can be inferred from

the measured low-temperature magnetization. A reason-

able assumption for Sp is Sp= 1 since pp(0)-2; more-
over, available spin-resonance studies on crystalline YFez
and Y-Fe amorphous alloys (Bhagat et al. , 1979; Lloyd
et al. , 1979) find iron gyromagnetic ratios very close to 2.

Bz(x) is defined in the standard way:
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and the physical demand that pR( T) and pp( T) separate-

ly vanish as T~T, leads to a relation between T, and
the molecular-field coe%cients n zz.
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FIG. 10. Saturation magnetization M, vs temperature T for
R2Fe&48 compounds (adapted from Hirosawa, Matsuura, et ol. ,
1986). (a) Light rare earths (R and Fe magnetic moments fer-

romagnetically coupled). (b) Heavy rare earths (antiferromag-

netic R-Fe coupling) ~

J+1
3J

The nzz are determined by numerically solving Eqs.
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which holds for the magnetization curve of a 

single crystal if the field is applied perpendicular 

to the easy direction. By plotting H/J versus J2 

the anisotropy constant K, can be obtained from 

the intersection of the straight line with the 

ordinate and the anisotropy constant K, can be 

derived from the slope. 

If this method is applied to determine K, and 

K, from the recoil curve in fig. 2, by taking into 

account the volume fraction of the hard magnetic 

Nd,Fe,,B phase, the following values of the ani- 

sotropy constants for Nd,Fe,,B at room tempera- 

ture are obtained: K, = 2.5 X lo6 J/m3, K, = 2.0 

x lo6 J/m3. These values are similar to values 

reported by Wang Zhen-Xi et al. [17]. Inserting 

these K,-, K,-values into eqs. (3), (4) and calculat- 

ing the magnetization curve it can be shown by 

comparison with single crystal measurements 

[11,14] that K, = 2.5 x lo6 J/m3 is far too low 

and K, = 2.0 X lo6 J/m6 J/m3 is far too high. 

demagnetized sample with the magnetic field ap- 

plied parallel to the alignment direction. This 

method has the disadvantage that only the ani- 

sotropy constant K, can be determined, but has 

the advantage that no high magnetic fields are 

necessary. The phase theory [20] predicts for the 

initial susceptibility 

J$/( 2 K, sin2 a,,) + cot2 !&o/N, 

’ = 1 + N,, [ Jz/(2K1 sin2 C&o) + cot’ @a/N,] ’ 

(8) 

A modified Sucksmith-Thompson-plot which 

was proposed by Ram and Gaunt [18] yields be- 

tter values for K, and K,: If a-lH/(J - JR) is 

plotted over cx2( J - JR)2, where JR is the rema- 

nence in the hard direction and a = (J, - JR)/Js 

is a factor which shall simulate 100% aligned 

grains in the above equation, the following values 

for Nd,Fe,,B are obtained at room temperature 

[4]: K, = 3.9 x lo6 J/m3, K, = 1.5 x lo6 J/m3. 

Values similar to these ones were given by Yang 

Fu Ming et al. [19]. 

where @, is the angle between the c-axis and the 

applied field H and N,, (N,) is the demagnetizing 

factor parallel (perpendicular) to H. 

The experimental value of the initial suscept- 

ibility of a sphere with magnetic field applied 

parallel to the alignment axis yielded [121x = 

dJ,,/d& = 0.2326 GOe-‘. Introducing our ex- 

perimental results !I+, = 9.5” (see section 3.4) J, = 

1.388 T and N,, = N, = 4a/3 we obtain K, = 4.4 

x lo6 J/m3. 

It can be stated that the determination of K, 

and K, by means of the Sucksmith-Thompson 

plot or with the modified Sucksmith-Thompson 

plot according to Ram and Gaunt leads to errors 

especially of K, due to the fact that grain mis- 

alignments produce similar curvatures of the mag- 

netization curve as a higher anisotropy constant 

K2.  

This value is in good agreement with the value 

K, = 4.2 X lo6 J/m3 determined with the hard 

axis method. It should be noted that the de- 

termination of K, from measurements of the ini- 

tial susceptibility should be limited to the case 

where the easy axis and the c-axis coincide; if the 

easy axis lies on a cone around the c-axis (for 

Nd,Fe,,B: below 130 K) the initial susceptibility 

should not depend sensitively on temperature, i.e. 

on K,, but predominantly on the sample geometry 

WI .  

The usual method for the determination of the 

anisotropy constants K, and K, is to measure the 

magnetization curve with the magnetic field ap- 

plied perpendicular to the easy direction. The 

interpretation of this measurement was given 

above. 

-*-*=  

Hl  

-10  

TCKI  -  

Another interesting method for the determina- Fig. 8. Temperature dependence of K, and K, for Nd,Fe,,B 

tion of the anisotropy constant K, is to measure (deduced from measurements of sintered Nd,,Fe,,B, mag- 

the magnetic initial susceptibility x of a thermally nets). 
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Fluctuation	Classes:	Spatially	independent	spins

Low	T:	RE	and	Fe	spins	in	two	

sublattices,	coupled	through	

molecular	field	only.	Spins	assumed	

to	fluctuate	spatially	independently	

J. F. Herbst: R,Fe„,B materials

(6) and (7) subject to the condition that the calculated

magnetization

40

M(T)=d [2)MR(T)+14PF(T)] (12)
30

corresponds best with experiment. For Nd2Fe&4B, Fuerst
et a1. (1986) found good correspondence with the mea-

sured magnetization using nF„-—5.9X 10, nR„-—2.2
X 10, and nRR

——3.3X 10, values conforming to the usu-

al hierarchy; their results are shown in Fig. 11. The re-
sult for nFF is basically identical to nFF —-6.0X10 for

elemental iron obtained from Eq. (9) in the form

T, =an„&for one sublattice with T, (Fe)= 1043 K. H.-S.
Li, Zhang, and Dang (1988) performed similar analyses

for nine members of the series; although nFF was always

determined to be the largest coe%cient and essentially in-

dependent of the R component, they somewhat surpris-

ingly found nRR and nR„to be of the same order for the
heavy-rare-earth compounds, which would suggest that
R-R interactions are not negligible for those materials.

In contrast, Radwanski and Franse (1987) have estimated

that the R contribution to the rare-earth molecular field

is small compared to the iron component [i.e.,
nRR &(nRF in Eq. (4)], and Belorizky et al. (1988) have

noted that in several other series nRR declines by almost

an order of magnitude from the light-R to the heavy-R

compounds.

Given the proximity of the R moments to their free-

ion values, use of a Brillouin function as in Eq. (6) to
model pR(T) is not unreasonable, even though it is

rigorously justified only in the noninteracting limit. Sup-

port exists for this description in addition to the adequa-

cy of molecular-field theory in analyzing the total mo-

ment. Boge et al. (1985) isolated pod(T) in Gd2Fe, ~B
from an appropriate difTerence of the Gd2Fe&48 and

YzFe,4B magnetizations and showed that pod(T)/pod(0)
is well represented by B7&2[2Sp&H,„(T)/k&T], where
S=—,'is the Gd spin and II,„(T)is proportional to the

non-4f component of the Gd2Fe&4B magnetization. Simi-

lar analyses of pR( T) were conducted by Hirosawa,

20
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FIG. 11. Molecular-field analysis for Nd2Fe]4B (Fuerst et al. ,
1986). Open circles denote the measured moment per formula

unit. The solid line is the calculated total moment, which is the

sum of the iron (dotted line) and neodymium (dashed line) con-

tributions.

Matsuura, et al. (1986) on seven of the compounds.

Berthier et al. (1986) extracted the temperature variation

of the Dy moment in Dy2Fe, 48 from the measured Dy
hyperfine field and found it accurately described by a

Brillouin form.

2. Heisenberg model and exchange energies

Exchange interaction energies jzz among the R and

Fe spins can be related to the molecular-field coefficients

n~~ by exploiting the equivalence of the molecular-field

model and the two-sublattice Heisenberg model in the

nearest-neighbor self-consistent-field (or mean-field) ap-

proximation. In zero field the Hamiltonian for the latter

can be written as

~—=—2jFF g SF S0 2JRR g SR Sk 2JRF g SR
l &j l (J i &j

——2j g S'.(Sf)—2jR g S' .(Sg)—j„gS' (Sf)+ g Sf (S' )

(13a)

(13b)

g 1

XPF(0) 2 JFF FFiMF( T)+ JRFZFRPR( T)
l gp gF g

2

—XV'R(0). 2
g

1
JRRZRRP'R( )+

gF

g
—1

JRFZRFPF( T) (13c)

where the identifications (S„')~—pF(T)/gF [so that

gF ~pF(0) since SF= 1 is assumed] and

I

have been used, and Zz~ is the number ofB atom neigh-

bors of atom A. Comparing Eq. (13c) to the energy

PBX [PF(0) HF(»+l R(o) HR(»]
l
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Fluctuation	Classes:	Collective	Spin	Waves	

F

Evans,	Chantrell 2015

Low	T:	collective	spin	waves

*	classical

*	quantum:

*	Kuzmin interpolation	from	

perturbative spin	waves	to	critical	

behavior
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Fluctuation	Classes:	Collective	Critical

*	In	critical	region	close	to	Tc:	

Collective	critical	spin	fluctuations.

*	Theoretical	framework:	

Renormalization	and	scaling	of	the	

Ginzburg-Landau–Wilson	theory.

*	Starting	from	atomic	scales,	

integrate	out	spin	fluctuations	to	a	

cutoff	length	L and	represent	the	

integrated-out	fluctuations	by	an l=ln(L)	

dependent	renormalization/scaling	of	

the	parameters	g(l):
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Renormalization/Scaling	theory	of	

Micromagnetics

Finite	element	micromagnetics (FEM)	

gets	Tc very	wrong	for	classes	of	

materials,	such	as	permalloy

Reason:	FEM	parameters	are	taken	from	

microscopic	values,	assuming	all	spins	

within	finite	element	cell	are	fully	aligned.

Idea:	renormalize	the	microscopic	

parameters with	spin	wave	fluctuations	of	

wavelengths	smaller	than	L:	“integrate	

out	spin	fluctuations	to	length	L”0 5000 10000
0

0.2

0.4
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n

Temp (K)

renormalized

unrenormalized

Grinstein,	Koch,	PRL,	2003
@T=@l # %"T ' aT2

' (

E!f ~SSg" #
J

2

Z

ddx!rŝs! ~xx""2;

all	spins	aligned SW	fluctuations

Tc~1,000K

Renormalized	FEM:	Tc becomes	realistic	



Renormalization/Scaling	theory	of	

Micromagnetics

Renormalization	in	magnetic	field	h

FEM	simulation	of	magnetization	

with	cell	sizes	L=2,	4,	and	8nm	gives	

cell-size	dependent	results.

FEM	with	same	L=2,	4,	and	8nm

cell	sizes	but	performed	with	

renormalized	parameters	gives

cell-size	independent	results.
Grinstein,	Koch,	PRL,	2003
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Renormalization/Scaling	theory	of	

Micromagnetics

Renormalization	with	anisotropy	g
Limitations:

(-)	FORC:	Reversal	is	different	from	

criticality

(-)	Classical	spins

(-)	Renormalization	approximation:	

keep	only	leading	logarithms

(-)	Geometry	approximated	as	

isotropic	

(-)	Accurate	in	2+e dimension,	

becomes	less	reliable	in	d=3.
Grinstein,	Koch,	PRL,	2003

R
% &

dT%l&=dl ' ($$) K!T%l&; h%l&; g%l&"*T%l&;

dh%l&=dl ' 2h%l&;

dg%l&=dl ' (2$ 2K!T%l&; h%l&; g%l&"*g%l&;



Grinstein:	Renormalization	by	Spin	Wave	

Fluctuations	from	microscopic	to	FE	scales

0.5	nm 107-109nm
L

Ms(exp)

1.	Atoms	

in	unit	cell

2. Spin	waves	

in	FE	cells

3. Micromagnetic simulation 4.	Macroscopic

Ab initio Analytic/RG Finite	Element Experiments

Ms(L)
Spin	wave	reduction	of	parameters	up	to	L=2-4 nm,	to	be	used	

in	Finite	Element	simulation	to	macroscopic	scales

2-4nm



Adaptation	for	FORC:	Reversal	is	governed	by	

domain	wall-mediated	nucleation,	not	spin	waves
Perfect Nd2Fe14B grain

µ0Hext
4.97 T

*saddle point

50 nm

T = 300 K



Reversal	simulation	by	Finite	Element	

Micromagnetics.	But	what	parameters	to	use?

Finite element micromagnetics

Defect layer
(Nd,Dy)2Fe14B

Nd2Fe14B

compute 
energy barrier for 
magnetization 
reversal

state 1

state 2

?
*saddle point

Activation volume

Model T (K) v (nm3)
(i) NdFeB 300 148
(i) NdFeB 450 268
(ii) Defect 300 250
(ii) Defect 450 531
(iii) Shell 300 176
(iii) Shell 450 365

Street and Brown, Magnetic viscosity, fluctuation fields, and 
activation energies,  J Appl Phys 76 (1994) 6386

Activation	volume:

For	Nd2Fe14B:	V=148	nm
3,	linear	size	L~5nm.				

L	set	by	domain	wall	thickness	dDW

To	capture	Domain	Wall-mediated	reversal,	FE	

cells	of	size	~2	nm	are	used	at	boundaries.

Results	are	sensitive	to	FE	cell	size.	

Idea	from	Renormalization	group:	

(1) Integrate	out	Spin	Wave	fluctuations	

from	atomistic	scales	to	FE	cell	sizes	

(2) Represent	the	SW	fluctuations	through	

cell-size	dependent	FE	parameters

Advantages:

(1) Capture	previously	ignored	physics

(2)	Reduce/eliminate	cell	size	dependence	

of	results	



Hierarchical	scales	of	Micromagnetic simulations	

of	magnetic	reversal

0.5	nm 2-10	nm 500-5,000	nm 107-109nm
L

Ms(exp)

1.	Atoms	

in	unit	cell

2. Spin	waves

in	FE	cells	

3. Nucleation,	

reversal	by	

domain	walls

4.	Average interactions,

HK=aK-NeffM

5.	Macroscopic

Ab initio Analytic/RG Finite	Element Mean	field Experiments

Ms(L)
Spin	wave	shifted	parameters	needed	at	L=2-10	nm,	to	be	used	

in	Finite	Element	simulation	of	reversal	up	to	500-5,000	nm



Nd2Fe14B	Microscopic	scales:	ab initio	results	

cover	a	wide	range

840 J. F. Herbst: R Fe, 8 materials

discussion of the latter], as well as in practice, such as un-

certainties in the convergence of the lattice sums [espe-

cially for the n =6 terms, as Zhong and Ching (1989) in-

dicate]. With the usual assumption of a set of charges
external to the R site in question, therefore, quantitative-

ly accurate results cannot be anticipated, but the point-

charge model has provided useful qualitative informa-

tion. In particular, it demonstrates that among the 4„
the n=2 terms are largest. This means that Bz controls
the sign ofK, [see Eq. (27a)], which often determines the

anisotropy preference (easy e axis or basal plane). Posi-

tive charges on the R neighbors alone lead to Az(f),
A z(g) )0, implying K, )0 ( &0) if Oz =az (0 ()0) [cf.
Eqs. (23), (26b), (27a)]. That is, based on the R anisotro-

py originating from the crystal-field splitting of the 4f
shell, the R2Fe,~B compounds having an oblate 4f
charge distribution (R=Pr, Nd, Tb, Dy, Ho) are predict-
ed to be c-axis easy, while those having prolate 4f charge

(R=Sm, Er, Tm, Yb) should exhibit basal-plane anisotro-

py. This is in overall accord with experiment (above T,
for Nd2Fe]4B, Ho2Fe)4B and below T, for Er2Fe (48,
TmzFe, ~B, YbzFe,„B,as described in Sec. IV.A.3).
Givord, Li, and Perrier de la BRthie (1984) have shown

that analogous considerations for the RCo5 series yield

signs of A2 opposite to those in R2Fe,4B, also in agree-

ment with the observed anisotropy behavior.

More realistic calculation of CEF parameters must be

based on electronic structure work, and progress in this

regard is being made (see also Sec. V). Zhong and Ching

(1988, 1989) have computed the 8„for NdzFe, 4B by ex-
plicitly treating the intr asite environmental charge

penetration neglected in the conventional point-charge

model. The point-charge model is employed for intersite

contributions, but with effective charges derived from a

band calculation. The charges depart substantially from

the choices made by others in applying the point-charge

TABLE VIII. Crystal-field and exchange parameters for Nd2Fe, 48. All entries in K.

Reference

gO —3.77
—2.85

—2.2
—2.2

—1.93
—1.93

—1.6
—1.6

—2.36
—2.36

—4.94
—4.87

2 —1.45
1.26

2.92

2.92
4.3 4.53

—1.46
9.70
3.21

gO 0.0215
0.0181

0.00860
0.00860

0.0107
0.0123

0.025
0.025

0.011
0.0»

0.0135
0.0135

0.0504
0.0631

g4 0.0140
—0.0192

0.0344
—0.0367

—0.0033
—0.0033

—0.0176
—0.00250

0.000866
0.000866

0.00125
0.00125

0.0012
0.0012

0.00166
0.00166

0.315
0.0866

—0.00461
—0.00461

g4 —0.0234
—0.0700

0.00749
0.00749

0.00722
0.0189

0.0069
0.0069

—0.0206
—0.242

p~H,„(T=0)/k~ 350 313" 323 310 313

'Zhong and Ching (1989).
M. Yamada et al. (1988).
'Cadogan et al. (1988).
F.T. Parker (1987).
'Zhao and Jin (1987).
Radmanski and Franse (1989).
Boge et al. (1985, 1986) as cited by Cadogan et al. (1988).
"H. S.Li, Cxavigan, et al. (1988).

Rev. Mod. Phys. , Vol. 63, No. 4, October 1991

Herbst

1991



Spin	Wave	Fluctuation	Corrections:	

Relative	to	Microscopic	or	Macroscopic	Scales?

0.5	nm 107-109nm
L

1.	Atoms	in	

unit	cell

2. Spin	waves 3.	Macroscopic

Ab initio Analytic/RG Experiments

Ms(exp)

Ms(L)
Both	approaches	are	on	sound	theoretical	basis



Spin	Wave	Fluctuation	Corrections	

to	Microscopic	and	to	Macroscopic	scales

qx

qy

p/ap/L

From	microscopic to	FE	cell	size	L

qx

qy

p/ap/L

From	macroscopic to	FE	cell	size	L



Anchor	Spin	Wave	Fluctuations	at	

Macroscopic	Scales

0.5	nm 107-109nm
L

1.	Atoms	in	

unit	cell

2. Spin	waves 3.	Macroscopic

Ab initio Analytic/RG Experiments

Ms(exp)

Ms(L)



Spin-Wave	Renormalization	of

Finite	Element	Cell	Parameters:	Nd2Fe14B	

10 034 K. RIED, V. OZPAMIR, AND H. KRONMULLER 50
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FIG. 3. Spin-wave dispersion relation for NdqFe~48 plotted
as a function of q, = qc/2s in reduced lattice units [r.l.u. j
with c = 12.2 L (Refs. 14, 15). The points correspond to the
experimental results and the solid line serves as a guide to
the eye. The long-dashed and the short-dashed curves show

results of the micromagnetic theory with n~T ——2.48 x 10
Tm/A and nJiT = 0.55 x 10 Tm/A, respectively.

—2.10 x 10 J obtained by ab initio calculations, 2 the
resulting coupling constant is nRT = 2.48 x 10 Tm/A.
Magnetic measurements at room temperature are usu-

ally analyzed in terms of the effective anisotropy con-
stants Ki, K2, . . .without taking into account the two-

sublattice structure. Considering only the second-order
term of the anisotropy energy and small external fields,

the effective constant K,g ——Kq is related to the param-
eters of the two-sublattice model by

2KRKT
Kz +K~+

&RTMRMT

KRM~+ Kz MR

nRT MRMT (Mn+ MT )
1+2

(45)

With the experimental result of K,ir = 5.0 MJ/m and

the parameters given above Kn = 4.4 MJ/m is ob-

tained. The resulting spin-wave energies deduced &om

Eq. (31) are

E+ (q) = 18.1 meV + 39.2 meV A. q,
E' (q) = 0.76 meV+. 107.3 meV A. q,

and the energy of the local mode following from Eq. (30b)
is An = 13.46 meV. The acoustical mode E (q) is shown
in Fig. 3 as a long-dashed line. The gap energy Eo is in
reasonable agreement with the experimental result, while
the curvature of the dispersion relation is too small. Since
n~z is the only parameter which has not been determined

by an independent experiment, we varied the value of
n~z to obtain a fit of the experimental date. Taking

nIiT = 0.55 x 10 Tm/A from Eq. (45) the value of

K~ = 7.7 MJ/m is obtained; the spin-wave energies are

E+ (q) = 6.7 meV + 13.7 meV A q2,

E (q) = 0.82 meV + 132.8 meV A q,

and the energy of the localized excitation is A~ ——6.1
meV. The short-dashed line in Fig. 3 corresponds to this
fit. The value of the gap energy Eo is not very sensitive

to the variation of nRT in the present case and there-
fore we have chosen the value of n~T which leads to the
same curvature as the experimental curve. To summa-

rize, our analysis suggests a strong temperature depen-
dence of n~T having at room temperature approximately
one-fourth of its low-temperature value. Final conclu-

sions, however, can be drawn only if the high-energy ex-

citations E+ and A~ are considered as well. Preliminary
experimental results on this pointii show high intensities

of magnetic scattering at energies E ( 15 meV but the
resolution does not allow a detailed interpretation.

C. Rqreq4B at T 0 K

Our model is applied to the R~Feq48 compounds which

exhibit an anisotropy of the easy-axis type at low temper-
atures. The exchange fields and crystal-field parameters
of these compounds have been obtained by analyzing the
high-field magnetization curves of single crystals Th.e
various sets of parameters obtained by these analyses are
referred to as the models Y, G, 2' and R. Using
the results of the di6'erent models, the spin-wave ener-

gies are calculated and compared with recent neutron-

scattering data. ' 2
Up to now for the compounds with

R =Pr,ad, Tb,Dy only neutron-scattering experiments

using powder samples have been performed. Therefore
instead of the dispersion relations E+ (q) only peaks cor-
responding to the flat parts of the dispersion curve could

be observed [Figs. 4(a)—4(d)j. It is assumed that the

peaks originate &om the local mode, A~, the gap en-

ergies Eo+ of the optical and acoustical mode, and the

points where these modes are reaching the boundary of
the Brillouin zone. Since within the present paper only

spin waves at small q values are investigated, the latter
points cannot be identified.

The discussion is restricted to the case H = 0 and for

the T sublattice the values of MT = 1.24 x 10 A/m and

KT = 0.8 MJ/m reported for Y2Fei48 at T = 4 K have

been used. The magnetization M~ of the R sublattice

is calculated with Eq. (10b) using NJi
——8.47 x 102 /m

and the angular momentum J and the Lande factor gg of
the Bee ion shown in Table III. Prom the R-T exchange
Geld B „and the crystal-field parameters A suggested

by the models Y, G, and R, respectively, Loewenhaupt

et al. calculated the single-ion excitation energies A~
shown in Table IV. The coupling constants J~T and n~T
are related to B,„by Eqs. (19) and (17). To calculate
J~T we used Sz ——1.13 following Rom Eq. (10a) and

z~T ——16 which is more reasonable than z~T ——18 used
by many other authors. ' Note that, however, n~T is

directly related to B,„via

(46)
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FIG. 3. Spin-wave dispersion relation for NdqFe~48 plotted
as a function of q, = qc/2s in reduced lattice units [r.l.u. j
with c = 12.2 L (Refs. 14, 15). The points correspond to the
experimental results and the solid line serves as a guide to
the eye. The long-dashed and the short-dashed curves show

results of the micromagnetic theory with n~T ——2.48 x 10
Tm/A and nJiT = 0.55 x 10 Tm/A, respectively.

—2.10 x 10 J obtained by ab initio calculations, 2 the
resulting coupling constant is nRT = 2.48 x 10 Tm/A.
Magnetic measurements at room temperature are usu-

ally analyzed in terms of the effective anisotropy con-
stants Ki, K2, . . .without taking into account the two-

sublattice structure. Considering only the second-order
term of the anisotropy energy and small external fields,

the effective constant K,g ——Kq is related to the param-
eters of the two-sublattice model by

2KRKT
Kz +K~+

&RTMRMT

KRM~+ Kz MR

nRT MRMT (Mn+ MT )
1+2

(45)

With the experimental result of K,ir = 5.0 MJ/m and

the parameters given above Kn = 4.4 MJ/m is ob-

tained. The resulting spin-wave energies deduced &om

Eq. (31) are

E+ (q) = 18.1 meV + 39.2 meV A. q,
E' (q) = 0.76 meV+. 107.3 meV A. q,

and the energy of the local mode following from Eq. (30b)
is An = 13.46 meV. The acoustical mode E (q) is shown
in Fig. 3 as a long-dashed line. The gap energy Eo is in
reasonable agreement with the experimental result, while
the curvature of the dispersion relation is too small. Since
n~z is the only parameter which has not been determined

by an independent experiment, we varied the value of
n~z to obtain a fit of the experimental date. Taking

nIiT = 0.55 x 10 Tm/A from Eq. (45) the value of

K~ = 7.7 MJ/m is obtained; the spin-wave energies are

E+ (q) = 6.7 meV + 13.7 meV A q2,

E (q) = 0.82 meV + 132.8 meV A q,

and the energy of the localized excitation is A~ ——6.1
meV. The short-dashed line in Fig. 3 corresponds to this
fit. The value of the gap energy Eo is not very sensitive

to the variation of nRT in the present case and there-
fore we have chosen the value of n~T which leads to the
same curvature as the experimental curve. To summa-

rize, our analysis suggests a strong temperature depen-
dence of n~T having at room temperature approximately
one-fourth of its low-temperature value. Final conclu-

sions, however, can be drawn only if the high-energy ex-

citations E+ and A~ are considered as well. Preliminary
experimental results on this pointii show high intensities

of magnetic scattering at energies E ( 15 meV but the
resolution does not allow a detailed interpretation.

C. Rqreq4B at T 0 K

Our model is applied to the R~Feq48 compounds which

exhibit an anisotropy of the easy-axis type at low temper-
atures. The exchange fields and crystal-field parameters
of these compounds have been obtained by analyzing the
high-field magnetization curves of single crystals Th.e
various sets of parameters obtained by these analyses are
referred to as the models Y, G, 2' and R. Using
the results of the di6'erent models, the spin-wave ener-

gies are calculated and compared with recent neutron-

scattering data. ' 2
Up to now for the compounds with

R =Pr,ad, Tb,Dy only neutron-scattering experiments

using powder samples have been performed. Therefore
instead of the dispersion relations E+ (q) only peaks cor-
responding to the flat parts of the dispersion curve could

be observed [Figs. 4(a)—4(d)j. It is assumed that the

peaks originate &om the local mode, A~, the gap en-

ergies Eo+ of the optical and acoustical mode, and the

points where these modes are reaching the boundary of
the Brillouin zone. Since within the present paper only

spin waves at small q values are investigated, the latter
points cannot be identified.

The discussion is restricted to the case H = 0 and for

the T sublattice the values of MT = 1.24 x 10 A/m and

KT = 0.8 MJ/m reported for Y2Fei48 at T = 4 K have

been used. The magnetization M~ of the R sublattice

is calculated with Eq. (10b) using NJi
——8.47 x 102 /m

and the angular momentum J and the Lande factor gg of
the Bee ion shown in Table III. Prom the R-T exchange
Geld B „and the crystal-field parameters A suggested

by the models Y, G, and R, respectively, Loewenhaupt

et al. calculated the single-ion excitation energies A~
shown in Table IV. The coupling constants J~T and n~T
are related to B,„by Eqs. (19) and (17). To calculate
J~T we used Sz ——1.13 following Rom Eq. (10a) and

z~T ——16 which is more reasonable than z~T ——18 used
by many other authors. ' Note that, however, n~T is

directly related to B,„via

(46)

T(K) 300K 450K

µ0Ms(T) 1.61 1.29

A(pJ/m) 7.7 4.9

K	(MJ/m3) 4.3 2.9

Far	from	coercive	field:	Durst	1986



Nd2Fe14B:	Magnetization	M(H,L)	at	T=300K

Represent	magnetic	field	

with	Zeeman	gap.

FE	simulation	has	to	use	

5.5%	higher	M(L)	values	

than	M(exp)	when	

simulating	L=1nm	cells



Spin	Wave	Fluctuations	by	classical	spins

Chantrell simulated	

classical	spin	systems.

Also	reported	5-7%	size	

dependent	correction	

of	M(L)	for	cell	sizes	of	

L=1nm



Nd2Fe14B:	Exchange	A(H,L),	Anisotropy	K(H,L)	

at	T=300K

A	~	M2

10%	enhancement	at	L=1nm

K ~	M3 Callen-Callen law	

15%	enhancement	at	L=1nm	



Nd2Fe14B:	Magnetization	M(H,L)	at	T=450K

9%	enhancement	

at	L=1nm	

Spin	wave	spectrum	

not	known	at	T=450K

We	use	Holstein-

Primakoff-Kittel:

E(k)=(Ak
2-Bk

2)1/2

SPIN %AVES IN FERROMAGNETIC MEDIA 873

energy and low Curie points the anisotropy corrections

could be very important and could change the character
of the temperature dependence of the saturation

magnetization.

The complete expression for the magnetization M at
any low temperature T can be deduced as a function
of II, t, by evaluating the integral

k'dk

exp(koi/k2') —1
(26)

1»= 4n.M,P sin'8». (28)

Holstein and PrimakoP have pointed out that even
at the absolute zero the magnetization is slightly

dependent on the field, and that, strictly speaking, this

variation should be added to that of M(T)—M(0) to
get the total variation ofM(T) with H,„».This variation
of M'(0) with H, », which arises from the Geld depen-

dence of the zero-point energy of the spin waves, is

negligible for most practical purposes; however, it is
interesting to examine how it comes about physically.
Consider a spin wave whose wave vector k is in the

x-direction, M, being, as always, in the s-direction.
From Eq. (22) we find for the ratio of axes of the

elliptical cone which the spin vector describes

AMo, /AMo„=i [(qk'+ f)/(rjko+ g+ $)j&. (29)

A straightforward calculation of the magnetic, ani-

sotropy, and exchange energy associated with this spin
wave gives

total energy=ktI/4(e/«oc)M, $[(nk'+ i+5)
~

AMo ~'

+(~k'+f)~~M. „~ j, (30)

where 0 is the volume of the specimen. Setting this

equal to koo/2 and using Eq. (29), we can calculate the
zero-point amplitudes A&0, and BMO~. In particular,
we find

(&Mo. ['~ &Mo, )'= (4PM./&)' (31)

Thus the geometric mean of (bMoo[o and (AMo„(' is
always the same as in the simple theory which neglects
magnetic e8ects. Their algebraic mean, which deter-

mines the magnetization reversal associated with the
spin wave, is always greater than the geometric mean,

by an amount which increases as their ratio departs

which is proportional to M(0)—M(T). Since o& is given

by Eq. (23), approximations must be used to evaluate
the integral; as this problem has been fully discussed

by Holstein and Primako6 in Sec. IV of their paper, '
we shall give merely the correspondence between our

notation and theirs, which enables the treatment we

have just given to be substituted for the first three sec-

tions of their paper. They express ko& as (A»'—~B»~')»,

where, as comparison of their expressions with Eq. (23)
shows, we must take

.4»——(4A/M, )Pk'+2(H, ,,+H,«)P+4mM, P sin'8» (27)

Fro. 1. Schematic variation of the frequency co of a spin wave
with its wave vector k, in the presence of external and anisotropy
fields, for k)~M, (8=0) and h J M, (8=~/2). The dashed line is
the parabola given by the simple theory, ignoring magnetic and
anisotropy terms. Distances above it are expressed in terms of
H =H, t+H, ff and 8=H+4~M, .When H becomes &(4+M„ the
8=0 curve approaches the dashed parabola, while for small k the
curve for 8= m./2 approaches a straight line passing through the
origin.

increasingly from unity. If (H, »+H, «)(&4orM„ the

absolute value of the right of Eq. (29) will be &(1 for
spin waves of small k, so that these spin waves will

give a greater magnetization reversal than the simple

theory predicts, and in particular, a nonvanishing

zero-point reversal.

It is interesting to note that for a two-dimensional
lattice the integral corresponding to Eq. (26), which
has k instead of k' in the numerator, diverges if co is

taken proportional to k', as in the simple theory, but

converges if eu is modified by an anisotropy field accord-

ing to Eq. (23). The divergence given by the simple

theory signifies that in the absence of anisotropy a
two-dimensional lattice cannot be ferromagnetic the

convergence in the presence of anisotropy suggests that
in layer lattices with exchange interaction the ani-

sotropy energy may be able to induce a type of ferro-

magnetic behavior.

'This was first pointed out by F. Bloch, Z. Physik 61, 206
(1930).The transition in thin films between three dimensions and
two dimensions has recently been studied theoretically by M. J.
Klein and R. S. Smith, Phys. Rev. 81, 378 (1951).However.
L. Onsager, Phys. Rev. 65, 117 (1944), finds that if one uses the
Ising model interaction ZS;*S, two-dimensional lattices are
ferromagnetic. The different types of behavior can be understood
physically in terms of the energy required to reach a state of zero
magnetic moment, starting from a saturated ground state. For a
plane array E atoms on a side the energy required on the Ising
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1P, so that the energy is =J(1/E)'iP= J.



Comparison	of	Grinstein	Scaling	theory	and	

Spin	Wave	Renormalization

Two	results	show	very	

analogous	trends	and	

magnitude

Differences	between	

theories	explain	

differences	between	

results



The	Spin-Wave	Renormalized	Finite	Element	

Simulation	of	Nd2Fe14B at	T=450K

T(K) 450K

µ0Ms(T) 1.44

A(pJ/m) 5.7

K(MJ/m3) 2.73

Nd2Fe14B

80nm3 nanostructured	sample,	

2x2x2	NdFeB blocks	

Weak	ferromagnetic	d=2nm

layer	between	blocks

Cell	size	at	boundary:	L=1nm



The	Spin-Wave	Renormalized	Finite	Element	

Simulation	of	Nd2Fe14B at	T=450K

Including	Spin	Wave	

Renormalization	of	

the	FE	parameters	

increases µ0Hc by	

5%,	from	2.5T	to	

2.6T.	



2.	Time	Dependent	FORC	Analysis

*	Time	dependent	dynamics	of	magnetization	is	 governed	by	 the	

barriers	against	reversal

*	FORC	represents	barriers	very	well

*	Simple	model	calculation	explains	famous	 logarithmic	

“Sharrock’s law”	decay

*	Can	be	used	to	connect	FORC	diagrams,	measured	at	t~102 sec	

to	time	scales	of	interest:

10-9	sec	for	recording,	and	10+9	sec	for	geological	applications			
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I. INTRODUCTION 

In the classic paper where Preisach first introduced the 
model which now bears his name [l], he was the first to 
observe magnetic viscosity or aftereffect. Ntel, [2] introduced 
the concept of a fluctuating field to explain the phenomenon, 

and Wohlfarth [3] related it to the irreversible susceptibility. In 

this paper, we present a thermodynamic model for aftereffect 

where the population density of states obeys Maxwell- 

Boltzmann statistics. The smallest magnetic entity that switches 

as a single unit, a hysteron, will have either two stable states or 

a single stable state, depending upon the applied field. When it 

has two states, it could be in either state and sees an energy 

barrier to prevent it from going to the other state. 
The time required for a hysteron to cross an energy bamer 

to a lower energy state is given by the Arrhenius law 

t = to exp(WlkT), (1) 

where W is the energy bamer and to is the reciprocal of the 

attempt frequency. A collection of hysterons with different 

energy barriers will have a normalized irreversible component 

of magnetization that varies with time given by 

m,(t) = m,(O) + Am, 1- p,(Q exp(-t/t) d~ , (2) 

where m,(O) is the initial magnetization, Am, is the total change 
in magnetization due to aftereffect, andp,(t) is the probability 

that a given hysteron switches with time constant t. 

The proper choice ofp,(t) determines the behavior of the 
aftereffect. We will use the Preisach model to link this 

probability to hysteresis modeling, as was previously done by 
Korman and Mayergoyz [4] and Bertotti [5], but using a 

Gaussian distribution to obtain an explicit function of time for 
the magnetization. In order to have a stable Preisach model, we 

will use operative fields by replacing the applied field H, with 
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the operative field, h = H + aM, where CI is the moving 

parameter. Similarly, the up and down operative switching 
fields are u and v. The down state has an energy barrier of W, 
to keep it from switching to the up state. If we neglect the 
difference in the energy stored by the locally-reversible 
component of the magnetization, then this bamer energy is 
given by 

Wb = poA4V(~ - h) . (3) 

This is a good approximation for a recording medium whose 

squareness is close to unity. Such a hysteron will have a time 

constant given by 

T = Toexp[(u-h)/hJ1, for U%, (4) 

where hfis the fluctuating field [6] given by 

hf = kT/poMV. (5) 

A similar hysteron in the up state has an approximate energy 

barrier of p&V(h-v) to keep it from switching to the down 

state. We will mostly limit our discussion to common 

recording materials, whose standard deviation of the switching 

field is smaller than or comparable to the coercivity. They have 

a Preisach function that is essentially limited to a single 

quadrant, (u>O and K O ) ,  and will be referred to as single- 
quadrant media (SQM). Other media, referred to as three- 
quadrant media (TQM), will not be discussed here in detail. 

Often, aftereffect is studied by subjecting a negatively 

saturated material to a constant positive field. If that field is 

greater than roughly half the coercivity and the material is 

SQM, the probability of switching down is negligible and only 

the up-switching energy barrier need be considered, and.the 

barrier height is only a function of U. (More general 

magnetization histories will be discussed in section IV.) The 

ground (final) state magnetization in this field is nearly positive 
saturation. The initial magnetization is computed in the 
standard way from the Preisach model. Thus, the change in 

magnetization due to aftereffect is given by 
m 

Ami = 2 1  p(u) du, 

p(u) = -2 = 1 p(u,v) dv. 

(6 )  
h 

where the factor of 2 comes from the fact that Q changes from 

-1 to 1, and p(u) is given by 

dm 

dh 
(7) 

-m 

11. PROBABILITY OF t 

Assuming a Gaussian Preisach function (valid for a wide 

selection of recording materials [7]), the probability of a given 
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Gaussian distribution to obtain an explicit function of time for 
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the operative field, h = H + aM, where CI is the moving 

parameter. Similarly, the up and down operative switching 
fields are u and v. The down state has an energy barrier of W, 
to keep it from switching to the up state. If we neglect the 
difference in the energy stored by the locally-reversible 
component of the magnetization, then this bamer energy is 
given by 

Wb = poA4V(~ - h) . (3) 

This is a good approximation for a recording medium whose 

squareness is close to unity. Such a hysteron will have a time 

constant given by 

T = Toexp[(u-h)/hJ1, for U%, (4) 

where hfis the fluctuating field [6] given by 

hf = kT/poMV. (5) 

A similar hysteron in the up state has an approximate energy 

barrier of p&V(h-v) to keep it from switching to the down 

state. We will mostly limit our discussion to common 

recording materials, whose standard deviation of the switching 

field is smaller than or comparable to the coercivity. They have 

a Preisach function that is essentially limited to a single 

quadrant, (u>O and K O ) ,  and will be referred to as single- 
quadrant media (SQM). Other media, referred to as three- 
quadrant media (TQM), will not be discussed here in detail. 

Often, aftereffect is studied by subjecting a negatively 

saturated material to a constant positive field. If that field is 

greater than roughly half the coercivity and the material is 

SQM, the probability of switching down is negligible and only 

the up-switching energy barrier need be considered, and.the 

barrier height is only a function of U. (More general 

magnetization histories will be discussed in section IV.) The 

ground (final) state magnetization in this field is nearly positive 
saturation. The initial magnetization is computed in the 
standard way from the Preisach model. Thus, the change in 

magnetization due to aftereffect is given by 
m 

Ami = 2 1  p(u) du, 

p(u) = -2 = 1 p(u,v) dv. 

(6 )  
h 

where the factor of 2 comes from the fact that Q changes from 

-1 to 1, and p(u) is given by 

dm 

dh 
(7) 
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11. PROBABILITY OF t 

Assuming a Gaussian Preisach function (valid for a wide 

selection of recording materials [7]), the probability of a given 
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switching field, U, is 

p(u> = exp[- (u-Q2/2~ Is / o 2x, (8) 

where 5 is the average critical field, which for SQM is equal 

to the remanent coercivity. Then 

m(01 = erf(h-h/u). (9) 

Thus, from ( 5 ) ,  for a given applied field, in order for a hysteron 

to bave a time constant t it must have a positive switching field 

given by 

U = h f I~(T/T,) + h ,  for et0. 

p,(z) = p[u(~)] dddt = hfp[u(z)]/t. 

(10) 

We can now write the probability of a time constant, T, in 

temns of the probability of a certain switching field, U, as 

(1 1) 

p7(T)=exp{[h-h;+hf 1 n ( t / t ~ * / 2 o ~ ] / ( r , / ~ .  (12) 

Substituting this probability function into (2) gives the time 
variation of the aftereffect. Starting from negative saturation, 

the magnetization under a constant field h is given by 

Thus, from (8) and (1 1) we have 

\ 
\ 
\ 

h 
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I -  

/ 

/ 

/ 
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Fig. 1. Variation of magnetization due to magnetic viscosity as a function of 
log-time for two values of hfi when h is  Ek. 

To illustrate this time dependence, we integrated this 

expression numerically and constructed the semi-log plot 

shown in Fig. 1. We set the parameter U to 0.6, that is 

representative of recording media with fairly large hysterons. 

In this case, the field was held constant at the remanent 

colercivity so that the initial magnetization was zero. It is seen 

that for times somewhat greater that T,, the magnetization 

increases linearly with the logarithm of the time. The slope of 
this curve is normally calledthe decay coefficient, s. The effect 

of the fluctuating field is to change the slope of the linear 
portion of the aftereffect-log-time curve. This linearity can 

c o n t h e  for many decades as seen from the curve when hr/Xk 

is (equal to 0.007; however, when the magnetization approaches 

about half of the final value, the curve begins to deviate 

appreciably from the linear behavior, as seen from the curve 

when h /x is equal to 0.07. One of the characteristics of this 

process is that a small change in the fluctuating field can cause 

a large change in the time required to achieve half of the fmal 

value. These results generally agree with the results obtained 

for a wide range of materials [SI. 

r 

111. THE DECAY COEFFICIENT 

The derivative of (13) with respect to log-time is the decay 

coefficient 

Thus, $ is given by 

A plot of the decay coefficient as a hnction of time is 

illustrated in Fig. 2. 

Fig. 2. 

i 

If hfis sufficiently small so that we can neglect the term hfy, 

and if t is much larger than to, then this reduces to 

ss  - g f e x P [ - ( h - Q h o ' l  0 (16) 

Under these approximations it is seen that the decay coefficient 

is independent of time and has a maximum when h is equal to 

h,. Furthermore, this maximum is equal to 0.7979 hflo. It is 

noted that this coefficient is independent of to. 

For h, = .007 and t = 0.01 T,, the slope is very small, it 

reaches about 63% of its maximum value at to and is 

essentially at its maximum at 10 2,. The slope then is 

essentially constant for many decades. In particular, for hf ITk 
equal to 0.007 h k ,  at 10" T~ its magnitude has decreased less 

than 4% from the peak. If h,/Tk were decreased to .0007 then 

for the same time scale the decrease would be less than 0.04%. 

- 

w. GENERALIZED MODEL 

In general, when a hysteron is subject to a field less than U 
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model which now bears his name [l], he was the first to 
observe magnetic viscosity or aftereffect. Ntel, [2] introduced 
the concept of a fluctuating field to explain the phenomenon, 

and Wohlfarth [3] related it to the irreversible susceptibility. In 

this paper, we present a thermodynamic model for aftereffect 

where the population density of states obeys Maxwell- 

Boltzmann statistics. The smallest magnetic entity that switches 

as a single unit, a hysteron, will have either two stable states or 

a single stable state, depending upon the applied field. When it 

has two states, it could be in either state and sees an energy 

barrier to prevent it from going to the other state. 
The time required for a hysteron to cross an energy bamer 

to a lower energy state is given by the Arrhenius law 

t = to exp(WlkT), (1) 

where W is the energy bamer and to is the reciprocal of the 

attempt frequency. A collection of hysterons with different 

energy barriers will have a normalized irreversible component 

of magnetization that varies with time given by 

m,(t) = m,(O) + Am, 1- p,(Q exp(-t/t) d~ , (2) 

where m,(O) is the initial magnetization, Am, is the total change 
in magnetization due to aftereffect, andp,(t) is the probability 

that a given hysteron switches with time constant t. 

The proper choice ofp,(t) determines the behavior of the 
aftereffect. We will use the Preisach model to link this 

probability to hysteresis modeling, as was previously done by 
Korman and Mayergoyz [4] and Bertotti [5], but using a 

Gaussian distribution to obtain an explicit function of time for 
the magnetization. In order to have a stable Preisach model, we 

will use operative fields by replacing the applied field H, with 
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the operative field, h = H + aM, where CI is the moving 

parameter. Similarly, the up and down operative switching 
fields are u and v. The down state has an energy barrier of W, 
to keep it from switching to the up state. If we neglect the 
difference in the energy stored by the locally-reversible 
component of the magnetization, then this bamer energy is 
given by 

Wb = poA4V(~ - h) . (3) 

This is a good approximation for a recording medium whose 

squareness is close to unity. Such a hysteron will have a time 

constant given by 

T = Toexp[(u-h)/hJ1, for U%, (4) 

where hfis the fluctuating field [6] given by 

hf = kT/poMV. (5) 

A similar hysteron in the up state has an approximate energy 

barrier of p&V(h-v) to keep it from switching to the down 

state. We will mostly limit our discussion to common 

recording materials, whose standard deviation of the switching 

field is smaller than or comparable to the coercivity. They have 

a Preisach function that is essentially limited to a single 

quadrant, (u>O and K O ) ,  and will be referred to as single- 
quadrant media (SQM). Other media, referred to as three- 
quadrant media (TQM), will not be discussed here in detail. 

Often, aftereffect is studied by subjecting a negatively 

saturated material to a constant positive field. If that field is 

greater than roughly half the coercivity and the material is 

SQM, the probability of switching down is negligible and only 

the up-switching energy barrier need be considered, and.the 

barrier height is only a function of U. (More general 

magnetization histories will be discussed in section IV.) The 

ground (final) state magnetization in this field is nearly positive 
saturation. The initial magnetization is computed in the 
standard way from the Preisach model. Thus, the change in 

magnetization due to aftereffect is given by 
m 

Ami = 2 1  p(u) du, 

p(u) = -2 = 1 p(u,v) dv. 

(6 )  
h 

where the factor of 2 comes from the fact that Q changes from 

-1 to 1, and p(u) is given by 

dm 

dh 
(7) 

-m 

11. PROBABILITY OF t 

Assuming a Gaussian Preisach function (valid for a wide 

selection of recording materials [7]), the probability of a given 
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switching field, U, is 
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where 5 is the average critical field, which for SQM is equal 

to the remanent coercivity. Then 
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given by 
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Fig. 1. Variation of magnetization due to magnetic viscosity as a function of 
log-time for two values of hfi when h is  Ek. 

To illustrate this time dependence, we integrated this 

expression numerically and constructed the semi-log plot 

shown in Fig. 1. We set the parameter U to 0.6, that is 

representative of recording media with fairly large hysterons. 

In this case, the field was held constant at the remanent 

colercivity so that the initial magnetization was zero. It is seen 

that for times somewhat greater that T,, the magnetization 

increases linearly with the logarithm of the time. The slope of 
this curve is normally calledthe decay coefficient, s. The effect 

of the fluctuating field is to change the slope of the linear 
portion of the aftereffect-log-time curve. This linearity can 

c o n t h e  for many decades as seen from the curve when hr/Xk 

is (equal to 0.007; however, when the magnetization approaches 

about half of the final value, the curve begins to deviate 

appreciably from the linear behavior, as seen from the curve 

when h /x is equal to 0.07. One of the characteristics of this 

process is that a small change in the fluctuating field can cause 

a large change in the time required to achieve half of the fmal 

value. These results generally agree with the results obtained 

for a wide range of materials [SI. 

r 

111. THE DECAY COEFFICIENT 

The derivative of (13) with respect to log-time is the decay 

coefficient 

Thus, $ is given by 

A plot of the decay coefficient as a hnction of time is 

illustrated in Fig. 2. 

Fig. 2. 

i 

If hfis sufficiently small so that we can neglect the term hfy, 

and if t is much larger than to, then this reduces to 

ss  - g f e x P [ - ( h - Q h o ' l  0 (16) 

Under these approximations it is seen that the decay coefficient 

is independent of time and has a maximum when h is equal to 

h,. Furthermore, this maximum is equal to 0.7979 hflo. It is 

noted that this coefficient is independent of to. 

For h, = .007 and t = 0.01 T,, the slope is very small, it 

reaches about 63% of its maximum value at to and is 

essentially at its maximum at 10 2,. The slope then is 

essentially constant for many decades. In particular, for hf ITk 
equal to 0.007 h k ,  at 10" T~ its magnitude has decreased less 

than 4% from the peak. If h,/Tk were decreased to .0007 then 

for the same time scale the decrease would be less than 0.04%. 

- 

w. GENERALIZED MODEL 

In general, when a hysteron is subject to a field less than U 

Sharrock’s

DM(t)	~	log(t)	law



2.	Temperature	dependence	at	fixed	time
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Summary

1. Introduced	the	concept	of	Spin	Wave	Renormalized	FE	cell	

parameters;	developed	calculation	scheme	for	these	Spin	

Wave	Renormalized	parameters

2. Implemented	Spin	Wave	Renormalization-driven	cell	size	

dependent	parameters	into	Finite	Element	modeling	

3. Showed	that	including	the	Spin	Wave	Renormalization	into	

Finite	Element	modeling	increases	Hc of	Nd2Fe14Nx by	~5%	

to	Hc=2.6T
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4.	Spin	Wave	Renormalization	much	bigger	

(~	factor	10)	for	soft	materials,	e.g.			

between	hard	grains,	or	permalloy


