## Quantitative FORC Analysis: Mean Field Theory and Local Cluster Corrections

- D. Gilbert
- R. Dumas
- K. Liu
- T. Schrefl
- J. Vincent
- M. Winklhofer
- G.T. Zimanyi



# Outline

1. Developed mean field theory of FORC for interacting single phase nanoparticle arrays

- 2. Tested/verified theory experimentally on nanoparticle arrays
- 3. Incorporated local field/exchange corrections
- 4. Expanded work for soft-hard composites

# Experiments

Polycrystalline Co ellipses

E-beam lithography

Liftoff technique

Major/minor axis: 220/110nm

Created 50x50 micron array

Measure middle of the array to avoid edge effects

Created

- magnetizing arrays
- demagnetizing arrays

Varied coupling strength by varying separation: 150/200/250 nm

# Simulations

100x100 dipole array

Each dipole has its own anisotropy  $H_k^{\ i}$ 

Distribution  $D(H_k^i)$ : experimental, peaked, rectangle, Gaussian

Interaction:  $H_{int}^{i} = \alpha M(H) + H_{nn}^{i}$ 

- no interaction
- mean field level  $\alpha M(H)$ ,  $\alpha$  calibrated at saturation
- added nearest neighbor exchange/coupling

Down-flip:  $H+H_{int}^{i} < -H_{K}^{i}$ 

Up-flip:  $H+H_{int}^{i} > H_{K}^{i}$ 

Re-evaluate M(H), keep flipping until all dipoles stable

## **Demagnetizing** Arrays



### **Demagnetizing Arrays**



### Demagnetizing Arrays – Experimental Trends



Increasing interaction (right to left):

- 1. Min  $H_K$  end shift  $H_B>0$ , Max  $H_K$  end stays  $H_B=0$
- 2. Edge and negative region develops

## **Magnetizing Arrays**



### **Magnetizing Arrays**



#### Magnetizing Arrays – Experimental Trends



- 1. Min  $H_{K}$  end shift  $H_{B}<0$ , Max  $H_{K}$  end stays  $H_{B}=0$
- 2. No edge, negative region develops

#### Non-Interacting Arrays - Ridge



 $P_i(H_{k'})$  down-flips at  $H_{dn}^i = -H_{k'}^i$  and up-flips at  $H_{up}^i = H_{k'}^i$ 

 $H_R > -H_K^i$ ,  $P_i$  no contribution  $H_R = -H_K^i$ ,  $P_i$  is the last to down-flip, last to up-flip: upflip dM/dH jump unmatched by previous  $H_R : -d(dM/dH)/dH_R > 0$ 

#### Demagnetizing Arrays - Ridge

(3)

**c**)

 $\mathbf{H}_{\mathbf{C}}$ 

 $H_{K}^{\min}$ (1) . (2) (a) 1.0  $H_{tot} = H + \alpha M(H)$ α<0  $P(H_k^{min})$  unmatched (min) (4) 0 SM/M  $H_{dn}^{min} = -H_{K}^{min} - \alpha M_{S}$ (5)  $H_{ub}^{min}=H_{K}^{min}-\alpha M_{S}$ 0.5 <sup>200</sup> H(Oe) -400 0 400 150 250 Low  $H_c$  end shifted by H(Oe) H<sub>B</sub> H<sub>B</sub>  $\Delta H_{B} = \alpha M_{S} \Delta H_{C} = 0$ 200 H (Oe) 400 200 H (Oe) 400 **(b)**  $P(H_k^{max})$  unmatched (max) -200 -2 (0e) <sup>-</sup>2 -2 (0e) <sup>-</sup>2 -200  $H_{dn}^{max} = -H_k^{max} + \alpha M_S$ H<sub>R</sub> (Oe)  $H_{ub}^{max} = H_{K}^{max} - \alpha M_{S}$ -400 -400 High  $H_c$  end shifted by H<sub>C</sub>  $\Delta H_{\rm B} = 0 \quad \Delta H_{\rm C} = \alpha M_{\rm S}$ \_\_\_\_ H (Oe) H (Oe)

#### Demagnetizing Arrays - Ridge



### Demagnetizing Arrays - Edge

$$H_{tot}=H+\alpha M(H) \quad \alpha < 0$$

$$P(H_k^{min}) \text{ up unmatched (4-5)}$$

$$top:$$

$$H=H_k^{min}-\alpha M_S, H_R=-H_k^{min}-\alpha M_S$$

$$bottom$$

$$H=H_k^{min}+\alpha M_S, H_R=-H_k^{max}+\alpha M_S$$

$$top:$$

$$H_c=H_k^{min}, H_B=-\alpha M_S$$

$$bottom:$$

$$H_c=(H_k^{min}+H_k^{max})/2, H_B=\alpha M_S+(H_k^{max}+M_S)$$



## Demagnetizing Arrays - Edge

Edge: unmatched first flip

- 1. Min  $H_{K}$  end shift  $H_{B}$ >0
- 2. Max  $H_{K}$  end stay  $H_{B}$ =0
- 3. Ridge length increases
- 4. Edge develops down
- (boomerang/wishbone)
- 5. Negative feature

Tilt and length of edge can be used to quantitatively extract mean and width of  $D(H_{\kappa})$ 



#### **Demagnetizing Arrays - Negative Region**

Change rectangular  $D(H_k)$  to Gaussian Consider FORC of  $P(H_{k}^{Cent})$ :  $H_{B} = -H_{k}^{Cent}$ dM/dH of next FORC ( $H_{R} < H_{R}^{Cent}$ ) would match dM/dH<sup>cent</sup> for flat  $D(H_{\kappa})$ , no change in dM/dH, zero FORC But, for decreasing half of Gaussian  $D(H_{\kappa})$ the number of dipoles aligned with FORC<sup>Cent</sup> is less than on FORC<sup>Cent</sup>: dM/dH decreases, negative FORC in the high  $H_{k}$  region



### Demagnetizing Arrays - Mean Field Theory

Explains all experimental features:

- 1. Min  $H_{K}$  end shift  $H_{B}>0$
- 2. Max  $H_{K}$  end stay  $H_{B}=0$
- 3. Ridge length increases
- 4. Edge develops down
- (boomerang/wishbone)
- 5. Negative feature high  $H_K$  region
- + Tilt and length of ridge and edge can be used to quantitatively extract Ms and mean/width of  $D(H_K)$

