Quantitative FORC Analysis: Mean Field Theory and Local Cluster Corrections

- D. Gilbert
- R. Dumas
- K. Liu
- T. Schrefl
- J. Vincent
- M. Winklhofer
- G.T. Zimanyi

Magnetizing Arrays - Ridge

 $H_{tot} = H + \alpha M(H)$ α>0 $P(H_k^{min})$ unmatched (min) $H_{dn}^{min} = -H_{K}^{min} - \alpha M_{S}$ $H_{up}^{min}=H_{K}^{min}-\alpha M_{S}$ Low H_c end shifted by $\Delta H_{B} = \alpha M_{S} \Delta H_{C} = 0$ $P(H_k^{max})$ unmatched (max) $H_{dn}^{max} = -H_k^{max} + \alpha M_S$ $H_{up}^{max} = H_{K}^{max} - \alpha M_{S}$ High H_c end shifted by $\Delta H_{\rm B} = 0 \quad \Delta H_{\rm C} = \alpha M_{\rm S}$

Magnetizing Arrays - Ridge

Ridge: unmatched last flip

- 1. Min H_K end shift $H_B < 0$
- 2. Max H_K end stay $H_B=0$
- 3. Ridge length decreases
- 4. Edge ?
- 5. Negative feature

Magnetizing Arrays - Edge

Magnetizing Arrays - Edge

Edge: unmatched first flip

- 1. Min H_{K} end shift H_{B} <0
- 2. Max H_K end stay $H_B=0$
- 3. Ridge length decreases
- 4. Edge: no positive edge
- 5. Edge already generates
 bent-in negative feature
 (low H_K region)

Beyond Mean Field – Demagnetizing Arrays Nearest Neighbor Interaction

Experimentally, the ridge is segmented:

Account for it by including nearest neighbor non-mean field terms

Three primary peaks, three secondary peaks

Beyond Mean Field – Demagnetizing Arrays Nearest Neighbor Interaction

Beyond Mean Field - Demagnetizing Arrays Nearest Neighbor Interaction

(D1) positive saturation \rightarrow checkerboard ($\uparrow \uparrow \uparrow \rightarrow \uparrow \downarrow \uparrow : H_{int}=2H_{n.n.}$) (D2) checkerboard \rightarrow negative saturation ($\downarrow \uparrow \downarrow \rightarrow \downarrow \downarrow \downarrow : H_{int}=-2H_{n.n.}$) (D3) frust. checkerboard \rightarrow frust. checkerboard ($\downarrow \uparrow \uparrow \rightarrow \downarrow \downarrow \uparrow : H_{int}=0$)

(U1) checkerboard \rightarrow positive saturation ($\uparrow \downarrow \uparrow \rightarrow \uparrow \uparrow \uparrow : H_{int}=2H_{n.n.}$), (U2) negative saturation \rightarrow checkerboard ($\downarrow \downarrow \downarrow \rightarrow \downarrow \uparrow \downarrow : H_{int}=-2H_{n.n.}$) (U3) frust. checkerboard \rightarrow frust. checkerboard ($\downarrow \downarrow \uparrow \rightarrow \downarrow \uparrow \uparrow : H_{int}=0$)

peak P1 at $(H_c=H_K, H_B=+2H_{n.n.})$: FORC with the D1 and U1 flips peak P2 at $(H_c=H_K, H_B=-2H_{n.n.})$: FORC with the D2 and U2 flips peak P3 at $(H_c=H_K+2H_{n.n.}, H_B=0)$: FORC with the D2 and U1 flips **Peaks strong: flips through energetically favored intermediate state** P1/P2: flips from saturation into checkerboard - demagnetizing interactions P3: flip from checkerboard into saturation

Beyond Mean Field – Magnetizing Arrays Nearest Neighbor Interaction

Experimentally, the ridge is not segmented:

Even when nearest neighbor terms are included:

No energy minimizing intermediate state:

The flipping dipole further destabilizes other dipoles: avalanche

Simulations vs. Experiment: Mean Field plus Nearest Neighbor

Using known material parameters, mean field + nearest neighbor calculation quantitatively reproduced

- experimental FORC
- interaction fields

Mean Field FORC for Hard Soft Composites

Two dipole arrays

Different coercivity distributions

Coupled by:

- they both experience total mean field
- coupled by nearest neighbor interaction H_{ex}