Comparative Study of Transport Models for Bipolar Switching in Memristors

Duk Shin (UC Davis)
Olle Heinonen (Argonne)
GTZ (UC Davis)

Memristors - Explosive Recent Interest

HP group of Stan Williams reported hysteretic switching behavior in Pt/TiO/Pt structures (Nature 2008)
As of midnight: 529 citations

Switching by Channel Formation

- TMO systems are inherently inhomogeneous
- Switching mechanism: channel formation by oxygen vacancy migration

Becker et al PRL ‘02

TM transport evidence for channel formation

b)

c)

d)

Chae (2008)

Electronic Channel Formation model

(b)

(e)

Top Electrode

Middle Domains

Bottom Domains
Bottom Electrode

Channel Model of
 Rozenberg, Sanchez, Levy et al

a

b
initial oxygen vacancy density profile

"formed" oxygen vacancy density profile

Channel Model of
 Rozenberg, Sanchez, Levy et al

	Rozenberg et al (2010)
Vacancies	increase resistance
Boundary layer ("A")	present
Electron dynamics	implicit
Pile-up next to interface	vacancies
Cause of switching	vacancy bump inside interface moves from next to electrode into bulk

Metallic conduction: not intended for binary oxide systems

Channel lateral dynamics model of Kittl group

Limited utility:

- for narrow devices
- in light of direct imaging

Switching by Front Dynamics

Thermal image

O vacancy density from X-ray fluorescence

Switching may involve sample-wide front/wall moving

HP Modeling: Pickett et al.

$$
\text { Switching }=\text { Movement of wall of O vacancy-rich region }
$$

Phenomenology: variable w, domain wall location between high R and low R region moves

Double exponential dynamics is introduced to reproduce data, lacking clear motivation:
Undoped:

$$
\dot{w}=f_{\text {off }} \sinh \left(\frac{i}{i_{\text {off }}}\right) \exp \left[-\exp \left(\frac{w-a_{\text {off }}}{w_{c}}-\frac{|i|}{b}\right)-\frac{w}{w_{c}}\right]
$$

Doped:

Experimental evidence for Front model

1. Direct imaging

Shows dynamics of front explicitly
2. HP group analyzed scaling of I-V with lateral width of contact: front/channel in TiO: $x \sim 50-100 \mathrm{~nm}$
3. In devices of decreasing size: do front and channel pictures converge? Device lateral size can get in the same range of $\sim 30-50 \mathrm{~nm}$

However, in small devices the channels can get smaller as well, only few nm, still distinct from front of size, comparable to system size

HP Modeling: Strukov et al.

Vacancies and electrons couple only through Coulomb interaction:

1. Both of them are sources of the potential ϕ

$$
\begin{aligned}
& -\varepsilon \varepsilon_{0} \Delta \varphi(x) \\
& \quad=e\left(p(x)-n(x)+f_{\mathrm{D}}(x) N_{\mathrm{D}}(x)-f_{\mathrm{A}}(x) N_{\mathrm{A}}\right)
\end{aligned}
$$

2. The dynamics of both of them is driven by ϕ

$$
\begin{aligned}
& J_{\mathrm{ION}}(x)=-e D_{\mathrm{i}} \nabla N_{\mathrm{D}}(x)-e N_{\mathrm{D}}(x) u_{\mathrm{i}} \nabla \varphi(x) \\
& \nabla \cdot\left(-e n(x) \mu_{\mathrm{n}} \nabla \varphi_{\mathrm{n}}(x)\right)=0
\end{aligned}
$$

3. Electron mobility is not effected by vacancies

HP Modeling: Strukov et al.

HP simulations

4. Simulation: $w(O N)=0$

Self arrest: NO

HP measurement of ON/OFF width

Expt: $w(O N)=1.4 \mathrm{~nm}$ YES

So, we decided to check out the vacancies

by checking in the Bates Motel

What could possibly go wrong?

Our Simulations

Motivated by $\mathrm{TiO}_{2} / \mathrm{TiO}_{(2-x)}$ layered binary oxide structures

Pre-formed system, no additional formation is needed: the front separating high and low vacancy density regions is prepared

Can be equally appropriate for a formed channel

Thickness of insulating TiO_{2} layer is about 2 nm or less
(1) calculate the full energy of the electron system, driven by an applied voltage
(2) move the electrons with Monte-Carlo dynamics until a steady current state is established (1-100 million MC steps)
(3) move the vacancies according to a MonteCarlo dynamics using the electron configuration related to steady current
(4) recalculate the electronic current
(5) repeat the vacancy \& electron updates until both reach steady state, then record the current, corresponding to the applied voltage
(6) change the voltage incrementally and repeat steps (1)-(5)

Energetics

Electron energy

$$
\begin{gathered}
E_{i}=C^{s}\left(n_{i}-N_{\mathrm{avg}}\right)^{2}+\frac{C^{c}}{2} \sum_{k \neq i} \frac{\left(n_{k}-N_{\mathrm{avg}}\right)\left(n_{i}-N_{\mathrm{avg}}\right)}{d_{i k}}+C^{p} V_{i} n_{i}+C^{\mathrm{d}} L_{\mathrm{i}} n_{\mathrm{i}} \\
\begin{array}{c}
\text { grain charging } \\
\text { energy }
\end{array} \\
\begin{array}{l}
\text { Coulomb } \\
\text { interaction }
\end{array}
\end{gathered} \begin{aligned}
& \text { potential due to } \\
& \text { external voltage }
\end{aligned} \begin{gathered}
\text { disordered } \\
\text { grain energy }
\end{gathered}
$$

Electrodes
Electron reservoirs, separated from bulk with a work function W

Dynamics

Electron dynamics

$\delta_{j}<\delta_{0}$: tunneling, in boundary layer
$\mathrm{p}(i \rightarrow j)=\mathrm{p}_{0} \exp \left(-\left(\mathrm{V}_{0}+\Delta \mathrm{E}_{i j}-\right.\right.$ const. $\left.\left.\delta_{j}\right)\right) \Theta\left(-\Delta \mathrm{E}_{i j}\right)$
Tunneling barrier lowered by energy gradient and vacancy density
$\delta_{j}>\delta_{0}$: metallic, in bulk
$p(i \rightarrow j)=p_{0} \Theta\left(-\Delta \mathrm{E}_{i j}\right)$
Vacancy dynamics

$$
\delta \rho(i \rightarrow j)=\mu \exp \left(-\left(V_{00}-\Delta V_{i j}\right) / E_{0}\right)
$$

Mott-Guerney type

Results: No mobile vacancies

Onset/switching could have been observed without vacancy dynamics:
(a) Anderson localization
(b) Interacting localization (Coulomb Glass)
(c) Some kind of depinning
(d) Mott transition

Instead: no hysteresis, no switching

Mobile vacancies are essential for switching phenomena

Results: Mobile vacancies

FIG. 6. IV curves with varying disorders

WO3/PT cell

Results: Parameter space exploration

Different types of I-V curves
$\mathrm{R}_{\text {on }} / \mathrm{R}_{\text {off }}$ ratio as a function of parameters

Switching Mechanism

Applied Voltage: 0, Current: -0

depletion layer
4. This reduces field, arrests further front motion

Comparison to other work

Rozenberg, Sanchez, Levy et al

Our Model - Next Generation

- 3000 atoms
- Random energies
- Coulomb interaction (100,000 grid point)
- Electrons jump by master eq.

Summary

1. Reviewed some existing simulations, their applicability and limits
2. We studied the "coupled mobile electrons-mobile vacancies" model with explicit electron dynamics, having long range interactions and mobile vacancies
3. Switching requires mobility of vacancies
4. With mobile vacancies model reproduces experiments promisingly
5. Switching is driven by hole pile-up, flushed out with ON switching
6. Switching is - self-arresting

- sharp onset without assumption of double exponential w(i)
- boundary layer is self-defined

Broad Distribution of Switching Parameters

Memristors everywhere

(a) $\mathrm{Au} / \mathrm{Ti} / \mathrm{SrZr} 0.998 \mathrm{Cr} 0.002 \mathrm{O} 3 / \mathrm{SrRuO} 3$; (b) $\mathrm{Ag} / \mathrm{CeO} 2 / \mathrm{La} 0.67 \mathrm{Ca} 0.33 \mathrm{MnO} 3$;
(c) $\mathrm{Ag} / \mathrm{Bi} 2 \mathrm{Sr} 2 \mathrm{CaCu} 2 \mathrm{O} 8+y$ heterojunction; (d) $\mathrm{Pt} / \mathrm{NiO} / \mathrm{Pt}$; (e) $\mathrm{Al} / " R o s e ~ B e n g a l " / I T O ;$
(f) Al/DDQ/ITO; (g) Au/porus Si/p-type Si; (h) Double barrier AlAs/GaAs heterostructure.

Hysteretic/switching resistors: Bednorz strikes gold again

Reproducible switching effect in thin oxide films for memory applications

A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, ${ }^{\text {a }}$) and D. Widmer

IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
$\mathrm{SrTiO}_{3}, \mathrm{SrZrO}_{3}$

