### Comparative Study of Transport Models for Bipolar Switching in Memristors

Duk Shin (UC Davis) Olle Heinonen (Argonne) GTZ (UC Davis)



### **Memristors – Explosive Recent Interest**

HP group of Stan Williams reported hysteretic switching behavior in Pt/TiO/Pt structures (Nature 2008) As of midnight: 529 citations





### **Switching by Channel Formation**

- TMO systems are inherently inhomogeneous
- Switching mechanism: channel formation by oxygen vacancy migration



Becker et al PRL '02



### **TM transport evidence for channel formation**



Chae (2008)

### **Electronic Channel Formation model**



### Channel Model of Rozenberg, Sanchez, Levy et al





### Channel Model of Rozenberg, Sanchez, Levy et al



|                           | Rozenberg et al (2010)                                                     |  |
|---------------------------|----------------------------------------------------------------------------|--|
| Vacancies                 | increase resistance                                                        |  |
| Boundary layer ("A")      | present                                                                    |  |
| Electron dynamics         | implicit                                                                   |  |
| Pile-up next to interface | vacancies                                                                  |  |
| Cause of switching        | vacancy bump inside<br>interface moves from<br>next to electrode into bulk |  |

# Metallic conduction: not intended for binary oxide systems

### **Channel lateral dynamics model of Kittl group**



#### HfO system

|                           | Kittl et al (2012)                              |  |
|---------------------------|-------------------------------------------------|--|
| Vacancies                 | increase conductance TAT                        |  |
| Boundary layer ("A")      | absent                                          |  |
| Electron dynamics         | TAT network, no feedback to vacancies           |  |
| Pile-up next to interface | none                                            |  |
| Cause of switching        | conducting channel<br>disintegrates/reassembles |  |

Limited utility:

- for narrow devices
- in light of direct imaging

### **Switching by Front Dynamics**





Thermal image

O vacancy density from X-ray fluorescence

Switching may involve sample-wide front/wall moving

Janousch et al, (2006)

### HP Modeling: Pickett et al.

#### Switching = Movement of wall of O vacancy-rich region



Phenomenology: variable w, domain wall location between high R and low R region moves

Double exponential dynamics is introduced to reproduce data, lacking clear motivation:

Undoped:

Doped:



$$\dot{w} = f_{\text{off}} \sinh\left(\frac{i}{i_{\text{off}}}\right) \exp\left[-\exp\left(\frac{w - a_{\text{off}}}{w_c} - \frac{|i|}{b}\right) - \frac{w}{w_c}\right]$$

### Experimental evidence for Front model

Direct imaging
 Shows dynamics of front explicitly

2. HP group analyzed scaling of I-V with lateral width of contact: front/channel in TiO: x~50-100nm

3. In devices of decreasing size: do front and channel pictures converge? Device lateral size can get in the same range of ~30-50nm

However, in small devices the channels can get smaller as well, only few nm, still distinct from front of size, comparable to system size



### HP Modeling: Strukov et al.

a)

Vacancies and electrons couple only through Coulomb interaction:

1. Both of them are sources of the potential  $\phi$ 

 $-\varepsilon\varepsilon_0\Delta\varphi(x)$ 

$$= e(p(x) - n(x) + f_{\mathrm{D}}(x)N_{\mathrm{D}}(x) - f_{\mathrm{A}}(x)N_{\mathrm{A}})$$

2. The dynamics of both of them is driven by  $\phi$ 

$$J_{\rm ION}(x) = -eD_{\rm i}\nabla N_{\rm D}(x) - eN_{\rm D}(x)u_{\rm i}\nabla\varphi(x)$$

 $\nabla \cdot (-en(x)\mu_{n}\nabla \varphi_{n}(x)) = 0$ 

 $(10^{-1})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^{-2})^{-1}$   $(10^$ 

ON to OFF ( $v = +120v_0$ )

3. Electron mobility is <u>not</u> effected by vacancies

### HP Modeling: Strukov et al.

#### **HP simulations**

#### HP measurement of ON/OFF width



### So, we decided to check out the vacancies



by checking in the Bates Motel

# What could possibly go wrong?



### **Our Simulations**



Motivated by  $TiO_2/TiO_{(2-x)}$  layered binary oxide structures

Pre-formed system, no additional formation is needed: the front separating high and low vacancy density regions is prepared

Can be equally appropriate for a formed channel

Thickness of insulating TiO<sub>2</sub> layer is about 2nm or less

- (1) calculate the full energy of the electron system, driven by an applied voltage
- (2) move the electrons with Monte-Carlo dynamics until a steady current state is established (1-100 million MC steps)
- (3) move the vacancies according to a Monte-Carlo dynamics using the electron configuration related to steady current
- (4) recalculate the electronic current
- (5) repeat the vacancy & electron updates until both reach steady state, then record the current, corresponding to the applied voltage
- (6) change the voltage incrementally and repeat steps (1)-(5)

### **Energetics**

#### Electron energy

$$E_{i} = C^{s} (n_{i} - N_{avg})^{2} + \frac{C^{c}}{2} \sum_{k \neq i} \frac{(n_{k} - N_{avg})(n_{i} - N_{avg})}{d_{ik}} + C^{p} V_{i} n_{i} + C^{d} L_{i} n_{i}$$
grain charging
energy
Coulomb
potential due to
disordered
grain energy

#### Electrodes

Electron reservoirs, separated from bulk with a work function W

### **Dynamics**

#### Electron dynamics

 $\delta_i < \delta_0$ : tunneling, in boundary layer

 $p(i \rightarrow j) = p_0 \exp(-(V_0 + \Delta \mathsf{E}_{ij} - const.\delta_j)) \Theta(-\Delta \mathsf{E}_{ij})$ 

Tunneling barrier lowered by energy gradient and vacancy density

 $\delta_j > \delta_0$ : metallic, in bulk

 $\mathsf{p}(i \rightarrow j) = \mathsf{p}_0 \,\Theta(-\Delta \mathsf{E}_{ij})$ 

#### Vacancy dynamics

 $\delta\rho(i \rightarrow j) = \mu \exp(-(V_{00} - \Delta V_{ij}))/E_0)$ 

Mott-Guerney type

### **Results: No mobile vacancies**

Onset/switching could have been observed without vacancy dynamics:

- (a) Anderson localization
- (b) Interacting localization (Coulomb Glass)
- (c) Some kind of depinning
- (d) Mott transition

#### Instead: no hysteresis, no switching



Mobile vacancies are essential for switching phenomena

### **Results: Mobile vacancies**



FIG. 6. IV curves with varying disorders

Simulation

WO3/PT cell

### **Results: Parameter space exploration**



#### Different types of I-V curves

# $R_{on}/R_{off}$ ratio as a function of parameters

### **Switching Mechanism**



1. Electron depletion layer forms next to front, enhances total electric field felt by front

2. Total field depins front towards electrode

3. Insulating layer gets thinner: electron
 conduction switches ON, flushing out electron
 depletion layer

4. This reduces field, arrests further front motion



### **Comparison to other work**

#### Rozenberg, Sanchez, Levy et al



| )                                    |                           | Rozenberg et al                                                               | Our work                                                                                                  |
|--------------------------------------|---------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| .1<br>.01                            | Vacancies                 | increase resistance                                                           | increase conductance                                                                                      |
|                                      | Boundary layer ("A")      | present                                                                       | defined by low vacancy concentration: dynamic                                                             |
| .010                                 | Electron dynamics         | implicit                                                                      | explicit                                                                                                  |
| .008<br>.006<br>.004<br>.002<br>.000 | Pile-up next to interface | vacancies                                                                     | electrons/holes                                                                                           |
|                                      | Cause of switching        | vacancy bump inside<br>interface moves from<br>next to electrode into<br>bulk | wall of high vacancy<br>concentration moves<br>driven by field with<br>contribution from hole<br>build-up |

### **Our Model – Next Generation**



#### - 3000 atoms

- Random energies
- Coulomb interaction (100,000 grid point)
- Electrons jump by master eq.

### Summary

- 1. Reviewed some existing simulations, their applicability and limits
- 2. We studied the "coupled mobile electrons-mobile vacancies" model with explicit electron dynamics, having long range interactions and mobile vacancies
- 3. Switching requires mobility of vacancies
- 4. With mobile vacancies model reproduces experiments promisingly
- 5. Switching is driven by hole pile-up, flushed out with ON switching
- 6. Switching is self-arresting
  - sharp onset without assumption of double exponential w(i)
  - boundary layer is self-defined

# **Broad Distribution of Switching Parameters**



### **Memristors everywhere**



(a) Au/Ti/SrZr0.998Cr0.002O3/SrRuO3; (b) Ag/CeO2/La0.67Ca0.33MnO3;

(c) Ag/Bi2Sr2CaCu2O8+y heterojunction; (d) Pt/NiO/Pt; (e) Al/"Rose Bengal"/ITO;

(f) Al/DDQ/ITO; (g) Au/porus Si/p-type Si; (h) Double barrier AlAs/GaAs heterostructure.

# Hysteretic/switching resistors: Bednorz strikes gold again

APPLIED PHYSICS LETTERS

VOLUME 77, NUMBER 1

3 JULY 2000

#### Reproducible switching effect in thin oxide films for memory applications

A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel,<sup>a)</sup> and D. Widmer *IBM Research, Zurich Research Laboratory, CH–8803 Rüschlikon, Switzerland* 

