Where are the Frontiers of Energy Research in a Stormy World?

1

The March of Solar is Triumphant and Unstoppable

=8-10 nuclear reactor/year

But Seismic Shifts Are Emerging in the Deep

Don't Happy, Be Worry

- 1. Global geographical shifts from US/Japan to China
- 2. Huge and unpredictable price fluctuations
- 3. Business models: large fluctuations and shifts
- 4. Huge and unpredictable technology shifts
- 5. Huge shifts in government subsidies
- 6. Huge and unpredictable changes in competing energy sectors

Energy research has to recognize and adapt to the shifts of its environment more than regular academic research

1. Top 10 Solar Companies: The Baton Passes from US/Japan to China

1. Top 10 Solar Companies: The Baton Passes from US/Japan to China

Solar Cell Company	Country	2009 shipment(MW)	2010 shipment(MW)
Suntech	China China	704	1572
JA Solar	China China	520	1464
First Solar	USA	1100	1411
Yingli Solar	China China	525.3	1062
Trina Solar	China China	399	1057
Motech Solar	Taiwan	360	924
Q-Cells	💳 Germany	586	907
Gintech	Taiwan	368	827
Sharp	🔵 Japan	595	774
Sungen Solar	China China	193	588
Source	Photon 🗗	PVinsights &	

2. Huge Price Fluctuations

3. Business Models: Shifts and Fluctuations

Company	Status
Suntech	Bankrupt
Konarka	Bankrupt
Evergreen	Bankrupt
Solibro	Bankrupt
Solyndra	Bankrupt
Nanosolar	Reorganizing
Sharp	Shrinking
Applied Materials	Exited PV
First Solar	Doing well

3. Business Models: Shifts and Fluctuations

Company	Status
Suntech	Bankrupt
Konarka	Bankrupt
Evergreen	Bankrupt
Solibro	Bankrupt
Solyndra	Bankrupt
Nanosolar	Reorganizing
Sharp	Shrinking
Applied Materials	Exited PV
First Solar	Doing well

But First Solar is doing well because it left manufacturing for installation

3. Business Models: Shifts and Fluctuations

Year	Number of Car companies
1913	127
1970	3

Shifts and fluctuations do not necessarily mean the demise of an industry

4. Huge Technology Shifts

4. Huge Technology Shifts

5. Huge Shifts in Government Subsidies

China: gov't loans key economic factors Germany: tax subsidies key factors

6. Huge Shifts in Competing Energy Sectors

Hydraulic Fracking changed everything in last 4 years

Bloomberg Our Company | Professional | Anywhere

OPINION

NEWS

U.S. Oil Output to Overtake Saudi Arabia's by 2020

MARKET DATA

TECH

PERSONAL FINANCE

POLITICS

Expected grid parity shifted to 0.3\$/W

Energy Research Strategies in such a Stormy World

"All of the above" strategy

- 1. All of the above strategies need to be pushed
- 2. Time to think very differently, pursue radically new designs
- 3. But we have to accept that a primary guiding principle is the eventual utility of our research.

Advocacy - self-policing

- The scientific community needs to advocate support this "all of the above" strategy
- A baseline support needs to be secured for all directions to shelter them from the devastating fluctuations
- 3. Promise critical self-governance/ policing to prove that we are good guardians of the energy research effort

Frontiers

PERL c-Si cell

PERL= Passivated Emitter and Rear Locally diffused cell UNSW

Advantages:

- High Efficiency (current Si world record)
- Better Quantum Efficiency (Blue and Red)
- Optimized emitter and contacts separately

Efficiency > 20%

Disadvantages:

- Requires higher lifetime wafers
- ~ 12 process steps*
- Complicated mask alignment processing
- Front grid shading loss

Solutions:

• Move from p-type to n-type wafers

Higher lifetime wafer > 100s μ s

- Replace diffusion with Ion implantation
- Remove front grid

Inderdigitated Back Contact c-Si cell

HIT: c-Si/a-Si Heterojunction Si cell

HIT: Sanyo/Panasonic cell

Advantages:

- High Efficiency design
- Full area passivated contacts (no metal-to-Si)
- Very high V_{oc}
- ~ 8 process steps
- Low-temperature processing (< 250 °C)
- No doping of wafer maintains high lifetime
- Bifacial operation

Efficiency > 24.7%

Disadvantages:

- Process window may be narrow (small production)
- Very sensitive to cleaning
- Use of TCO is expensive
- TCO used for optical and electrical functions
- Reliability? (a-Si and TCO)
- Low Quantum Efficiency (absorpt. in TCO and doped a-Si)
- Requires low-temperature grid paste
- Process temperatures < 250 °C

High lifetime wafer (>1 ms)

Solutions:

 Other passivated contact materials and processing schemes?

Si cells: Present Frontiers

Switching from p-type to n-type single crystal wafers

Selective area contacts

Contact Passivation

Tandem junction

Z.X. Shen (Stanford): Call me Pete

PETE: Photon Enhanced Thermionic Emission

Uses all the bandgap energy +

the thermal energy for boosting emission:

Efficiency > 48% under concentration

Harry Atwater (CalTech): Photon management

Limiting re-emission angle

Balance with radiation field skewed: Incoming radiation from narrow Sun disk Re-emitted outgoing radiation to full spatial angle Limiting re-emission angle improves balance: Voc >1V, Efficiency > 33-35%

