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I. Pattern Formation	





I. Pattern Formation	



Pattern formation in dislocation systems is ubiquitous 
 
 
 
Equilibrium statistical physics: low T phase is dilute gas of 
dislocations with density vanishing as T   0 
 
Pattern formation is a far from equilibrium phenomenon 



I. Pattern Formation	



Early approaches	


	


1. Rate equations (Kocks)	



2. Mobile and immobile dislocations, transitions between (Kubin)	


	


3. Intersecting dislocation loops (Friedel, Kubin)	


	


4. Reverse diffusion (Holt)	


	


5. Forward Diffusion + Two types of dislocations (Walgraef-Aifantis)	


	


6. Statistical ensembles (Ananthakrishna)	





II. Concepts of Non-equilibrium Dynamics	



Start system far out of equilibrium, let it relax 	


	


Three hallmarks of glassiness	


	


1. Freezing of dynamics: time scale slows down by many 	


             orders of magnitude	


	


2. Aging: Response depends on a waiting time	


	


3. Coarsening: Domains form, grow in time	


	


	


(This work: only annealing, no shear) 	





II. Aging	



Spin Glass: Ag+2%Mn	


 	


1.  Field cool	


2.  Wait for tw	


3.  Measure relaxation	



Response depends on the waiting time:	
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II. Aging	



In mean field theory, C(t, tw) can assume scaling forms:	


	


1. Full/simple aging: C(tw, t+tw) = Ceq(t) Caging(t/tw)	


	


2. Super/sub-aging: C(tw, t+tw) = Ceq(t) Caging(t/tw

µ)	


	


µ>1 (superaging) and µ<1 (subaging) have been observed experimentally and numerically	


	


3. Activated aging: Caging(h(t+tw)/ h(t)) = Caging(ln(t+tw)/ ln(t))	


	


Worked very well for the 3D Heisenberg spin glass.	


	





II. Freezing of Dynamics	



Super Arrhenius law for 
viscosity:	



	


1. TG finite, τ~exp[1/(T-TG)]	


           Vogel-Fulcher	


	


2. TG zero: avoided criticality	


            Kivelson	


	


In practice: hard to distinguish,	



	

τ becomes immeasurably 
large at finite T 	





II. Coarsening	



3D ordered Ising model, 	


Anneal to T<Tc	



t=103 MC steps         t=105 MC steps	



1.  Domains form	


2.  Domains grow	





II. Coarsening: Egyptian vases	



Domains with increasing sizes 	


form on a time scale of thousands of years	





II. Coarsening: Ordered, Disordered Systems	



1. Ordered systems: L ~ t1/z  ,     z=2	


	


	

Theory: infinite D, mode coupling: hard to identify length	


	

Recently, Landau theory: growing length scales studied	


	

 	

 	

 	

 	

 	

(Chamon et al, 2002)	


	

Results can depend on dynamics: Kawasaki: z=3	



2. Disordered systems: L ~ (T logt)1/ψ       “z=0”	


      	


      Energy barriers scale as E ~ Lψ	



      Time to overcome barriers by activated dynamics:	


	

 	

t ~ exp(E/kT) ~ exp(Lψ/kT) 	



     Non-frustrated randomness (RFIM): Yes	


       Frustrated randomness (EA): less clear	





III. Simulations: Aristotelian Dynamics	
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Features 

1. Glide and climb (mobility: Bg, Bc) 
2. Annihilation 
3. Thermal force 
4. Advanced acceleration technique  
5. Rotation 
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Kroner continuum formulation:	



1. Overdamped (Aristotelian) dynamics	


2. τg/c is the glide/climb component of 	


the stress-related Peach-Kohler force	


3. Dislocation interaction is in-plane 	


dipole-dipole type (“vector Coulomb gas”)	


4. No external disorder	





III. Fast Fourier Multipole Expansion	



1. Divide simulation space into boxes: 

40,000 dislocations, 60,000 boxes	



2. Calculate intra box interactions 

AX in real space  	



3. Calculate interbox interactions BX 

by calculating stress by Fast 

Fourier transformation 	



4. Move dislocations by eq. of motion 	



5. Repeat from 2	
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B 
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III. Simulation Features	



Polarized      - Non-polarized	


1 glide axis  - 3 glide axes	


Climb           - No Climb	


Annihilation - No annihilation	


T=0              - T>0	


Rotation       - No rotation	





IV. Simulation Results: No Climb	



3 Glide axes	


Non-polarized	


Glide only, no Climb	


No annihilation	


	


	


Limited structure 

formation	


	





IV. No Climb: Aging	



Self-overlap 
 
 
 
 
 
Effective diffusion 
 

T=0.025        T=10 

At low temperatures system falls out of equilibrium	


Measured quantities start depending on waiting time: Aging	





IV. No Climb: (Near) Textbook Aging	



C(t,tw) = Ceq(t) C(t/tw
µ)	



	


Ceq(t) ~ t -β	


	



µ=0.66, β=0.54	


	


Analogous to spin glasses,	


since the location of the axes	


is a quenched randomness 	



     µ is close to β	





IV. No Climb: Freezing	



D(t,tw) ~ D(tw) t -γ           T>0	



γ=0.8	



Diffusion constant goes to 0:	



Freezing of dynamics	



	


Aging and Freezing are 

evidence for:	



Dislocation Glass                               	





V. Climb+Annihilation: Wall/Domain Formation	
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Bc/Bg=0.1 

- Glide only: 
     10% of dislocations form walls, 
     90% remains in dipoles,  
     which cannot annihilate 
 
- Glide+climb, annihilation: 
      Dislocations outside walls can  
      annihilate, only walls remain 
 
Domain formation induced 
by climb 

Glide, 3 slip axes, non-polarized:	


add climb, annihilation	





Rudolph et al. (2005) 

V. Climb: Experiment: Climb Induces  
Domain Structures in GaAs 	



Climb 



V. Climb: Experiment: Domain 
Formation in Dusty Plasmas	



Charged particles settle	


Climb is present	


Domain formation	



Quinn, Goree, 2001	





V. Climb: Coarsening	



Domain size grows with time	


Number of dislocations decreases	





V. Climb: Coarsening: z, Holt relation	



Number of dislocations: N ~ t-0.33 

Ave. distance between dislocations L ~1/N1/2 

 
L ~ t 1/z             1/z~0.17	



Holt relation:  cell area S	


S ~ N-1	


	



We measured S independently	


by a domain identifying search	


	





V. Coarsening in Di-block copolymers	



Chaikin, Huse, 2004	


previous talk	





V. Coarsening by Domain Absorption	



Coarsening happens by 	


smaller domains getting	


absorbed at the boundaries 	


of bigger domains.	


	


Connection to polymers	





V. Coarsening Exponent: 1/z=0.19	



Remarkable agreement 	


with our result of 1/z=0.17	





V. Summary of Part I.	



1.  Glide only model	


         - Aging: sub-aging scaling with waiting time	


         - Freezing: effective diffusion constant goes to zero	


	

   - Evidence for Dislocation Glass	


	

   - Limited domain formation	



	


2.   Glide + climb model	


	

   - Domain formation	


	

   - Coarsening with exponent related to experiment	



	


Proceed to understanding domain wall formation in detail	





VI. Understanding Wall Formation	



Sethna-Linkumnerd	


            (2006)	



Argaman (2001)	



also, Barts-Carlson (1995)	





VI. Glide only, Polarized: Wall Formation	



     	



- Dislocations glide along 1 axis	


	


- Walls are energetically favorable…	



Fe-Si, Hibbard-Dunn T=925C	





VI. Glide builds walls, climb destroys them?!?	



Continuous wall: (0,-1) to (0,1)	


	


Force on like dislocations:	


	


Glide only:	


-  repulsive on side	


-  attractive at ends only 	


	


Glide+climb:	


- repulsive everywhere ?!?	


	





VI. Glide: really no attraction from the side?	



Self-consistent Potential Approximation (SPA)	
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All individual dislocations cannot be traced	


Evolve the distribution of the dislocations Pu(x)	



No attraction from side.	


But: we assumed continuum limit!	





VI. Discreteness Essential for Wall formation	



Force on like (green) DL close to wall:	


	


Repulsive: 	


	


Attractive: 	


	


Growth from the side:	


  only in the attractive diamonds, 	


  generated by discreteness	


	


Growth from the end:	


  attractive funnel at end	





VI. Glide: Wall Formation: Simulation	



	


1. The dislocations outside the 
attractive red diamonds of their 
neighbors fly out	


	


2. Wall reassembles slowly, 
through 	


 - attractive side-diamonds   	


 - end-funnels	





VI. Glide: Walls in Field Theory:���
Reverse Diffusion	
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χ: Airy Potential	


	


f: Peach-Kohler force	


	


Simplest extra term to 	


capture discreteness	


	


Without extra term:	


Fluctuations/walls do not grow	


	


Extra term and ky=0:	


Unstable at every kx, 	


Larger kx modes grow faster  	





VI. Glide: Reverse Diffusion: Simulation	


2 2. /t const xρ ρ∂ = ×∂ ∂

Positive curvature (maxima):	


        always grow	


Negative curvature (minima):	


        always decay	


	


Walls indeed form! 	


	


Where the initial conditions 	


       had maxima	


	



Length scale for fluctuations of initial condition is ~ 1/ρ1/2 	


So distance between walls d ~ 1/ρ1/2 :  Holt relation satisfied	





VII. Glide+Climb: What Keeps Walls Together?	



     	



We saw in part I that climb is essential for wall formation.	


Yet, climb seems to allow walls flying apart.	


Why don’t walls fly apart when climb is present?	



3D: Junctions stabilize the patterns 	


(entangled/zipped dislocations lines)	


	


	


Bulatov (2006)	


	


Kubin (next talk)	


	


But: no junctions in 2D	





VII. Anchors Stabilize Against Climb	



     	



Botond movie:	


Szabad_mercedes	



There are no junctions in 2D: what stabilizes structures?	


Anchors stabilize domain walls effectively against climb	





VII. Anchors Stabilize Against Climb	



     	



Anchors stabilize domain walls effectively against climb	





VII. Ingredients of Wall Formation	



- Glide only + Polarized:	


        Wall forms by attracting dislocations in “near field” and at end	


	


- Glide only + Neutral:	


	

  Forces from opposite dislocations frustrate wall formation:	


	

  10% in walls, 90% between	



	


- Glide + Climb:	


        Climb allows opposite dislocations to annihilate	


        Only like dislocations in walls survive	


	


- Anchors: 	


	

   Stabilize walls against flying apart by climb	



         	





Summary	


	



Glide: Aging, Freezing (Deff=0): Dislocation Glass	



Glide+Climb: Domain formation            – Expt.	



Glide+Climb: Coarsening: z=0.17           – Expt.	



Walls/Glide: Attraction from near field – Sim’n	



Walls/Glide: Reverse diffusion field th.  – Sim’n	



Walls/G+C: Anchors stabilize walls        – Sim’n	





Aging	



Connection to equilibrium: 	


Correlation function C(t, t’) exhibits a plateau	


C(t, t’) at plateau is the Edwards-Anderson (EA) order parameter	



Increasing tw, fixed T	





Aging	



Stages:	


 	


1.  t<tw: quick β relaxation: system expands from initial condition	


        to explore boundaries of one well	



2.   t~tw: plateau: system stuck within one well 	


	


3.  t>tw: slow α relaxation: system escapes to other wells	



3	


1,2	





Glide only, 1 axis, Polarized: No Glassy Dynamics	



     	


-  No Aging	


-  E(t) ~ t-1.4	





     	





The Coarsening Exponent is 1/4	



L~t1/4              Chaikin, Huse, 2002	




