Ab initio studies of Nanoparticle Photovoltaics: MEG, Exotic core phases & Complementary transport

- G. Galli
- F. Gygi
- A. Gali
- D. Rocca
- M. Voros
- S. Wippermann
- I. Carbone
- G. Zimanyi

(UC Davis)

S. Carter (UCSC) T. Kaxiras (Harvard)

Solar Energy Conversion: Relaxation by phonons

Loss at low energies: no absorption below E(gap)

Loss at high energies: electron that absorbed a high energy photon E>E(gap) relaxes to E~E(gap) by emitting phonons

anatri

Solar Energy Conversion: Relaxation by excitons

Keep energy of high energy photons in electronic sector:

Relaxation by Multiple Exciton Generation:

Photo-excited first exciton relaxes by exciting second exciton instead of phonons

X->XX process needs to be faster than e-ph relaxation

Max efficiency: 44% 1 Sun (Klimov 2005) 70% 1000 Sun (Nozik 2013)

Multiple Exciton Generation - 1957

J. Phys. Chem. Solids. Pergamon Press 1957. Vol. 2. pp. 1-23.

IMPACT IONIZATION OF IMPURITIES IN GERMANIUM*

N. SCLAR† AND E. BURSTEIN

United States Naval Research Laboratory, Washington, D.C.

(Received 16 September 1956)

"Impact Ionization" has ~1% efficiency in bulk (Sclar 1957)

Multiple Exciton Generation

To save the exciton generation from the jaws of electron-phonon interaction:

"We're going to need a bigger Coulomb interaction"

In nanoparticles electrons cannot avoid each other: screening is reduced, Coulomb interaction enhanced (Nozik 2001-2004) 5

MEG in Nanoparticles: The Discovery

Klimov, Schaller (2004) pump & probe:

Quantum Yield (QY=#(electrons)/photon) up to 700%

MEG: Consensus Status (in solutions)

Beard (2011):

MEG is certainly present in NPs, albeit with lower efficiency

MEG first implemented in working solar cell: Dec. 2011

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell

Octavi E. Semonin,^{1,2} Joseph M. Luther,¹ Sukgeun Choi,¹ Hsiang-Yu Chen,¹ Jianbo Gao,^{1,3} Arthur J. Nozik,^{1,4}* Matthew C. Beard¹*

MEG: Absolute vs. Relative Energy scales

* Threshold energy bad: Eg is larger in NPs, so on absolute energy scales NP solar cells absorb smaller fraction of solar spectrum

* Coulomb strength -> Conversion efficiency enhanced: MEG more efficient in NPs than in bulk when gap increase is made implicit by plotting MEG on relative energy scale E/Eg

QCD - The Quantum Confinement Dilemma in Nanostructured Solar Cells

Transcending QCD in Nanostructured Solar Cells

The Solar Collaborative at UC Davis/UCSC

- 1. To transcend QCD
- 2. To concentrate on non-toxic and earth abundant Si, Ge

MEG primarily demonstrated with toxic materials PbSe

Experiment:

- S.Kauzlarich synthesize Si, Ge NPs
- D.Larsen characterize NPs with photoluminescence/transmission
- S.Carter assemble NPs into working solar cells

Theory:

- G.Galli
- F.Gygi
- A.Gali
- D.Rocca
- M.Voros
- S.Wippermann
- I. Carbone

Observing Multiple Exciton Generation in a Functioning Solar Cell

Carter lab: EQE>100% in working solar cell

Optimized cell performance not by the use of hydrazine, but by varying the composition

Transcending QCD in Nanostructured Solar Cells

Transcendent factors: preserve positives, suppress negatives

1. Surface reconstruction of nanoparticles

2. Shape engineering of nanoparticles: from dots to rods

3. Exotic core phase nanoparticles

4. Charge separation, transport and extraction

1. Surface Reconstruction Reduces the Gap

Transcendence: Reconstruction compensates gapenhancement, preserves enhanced Coulomb strength

Reconstruction

- compensates gap enhancement
- preserves enhanced Coulomb/MEG

Phys. Rev. B, 2013 17

2. Shape engineering

2. Lowering Shape Symmetry Reduces the Gap

Lots of transitions are forbidden by symmetry-driven selection rules

Lowering symmetry of nanoparticles allows more transitions: nanorods show MEG at lower energies

Gali, Kaxiras, Zimanyi, Meng, Phys. Rev. B 2010 19

3. Exotic Core Phase Si/Ge NPs: 3.1. Reduce Gap by using Bulk-Gapless Phases

Wippermann, Voros, Gali, Rocca, Zimanyi, Galli Phys. Rev. Lett. 110, 046804 (2013)

3.1. Gap reduction in BC8/Si-III

3.1. Comparison of LDA and GW

3.2. Transcendence: Exotic phases reduce gap in Ge nanoparticles, while preserving enhanced MEG

Exotic core phase NPs: Gap/MEG onset reduced in BC8 and ST12 relative to diamond

Exotic core phase NPs: Coulomb/MEG enhancement preserved in ST12, when gap scaled out by switching to relative energy scales E/Eg

3.3. High Pressure Polymorphs in Black Si: Mazur/Gradecak

JOURNAL OF APPLIED PHYSICS 110, 053524 (2011)

Pressure-induced phase transformations during femtosecond-laser doping of silicon

Matthew J. Smith,¹ Yu-Ting Lin,² Meng-Ju Sher,³ Mark T. Winkler,³ Eric Mazur,^{2,3} and Silvija Gradečak^{1,a)}

3.3. High Pressure Polymorphs in Black Si

- 1. The presence of BC8/Si-III phase confirmed by Raman scattering
- 2. In some samples, when BC8/Si-III phase is annealed away, subgap absorptance is greatly reduced

Alternative explanations focus on defect sites

To shed further light, we have synthesized Ge ST12 NPs, presently fabricating PV cells

4. Charge Separation and Extraction:4.1. Si NP in ZnS

- 1. Create ZnS matrix with 512 atoms
- 2. Replace 35-172 Zn/S atoms with Si atoms
- 3. Calculate energy
- 4. Calculate forces on ions
- 5. Relax structure with Qbox Molecular Dynamics at T(anneal) up to 1,000K
- 1. Observed formation of S shell around NP
- 2. Determined S stoichiometry optimal for clean gap

Wippermann, Voros, Gali, Gygi, Zimanyi, Galli Phys. Rev. Lett. 112, accepted (2014)

4.2. Band Alignment

Spatially varying DOS and gap

Interface:

Bulk: type I

NP in matrix: changes to type II

This is favorable for charge separation

4.3. Projected DOS

Projected states to atomic orbitals to determine character of states

4.4. Transcending QCD impeding transport: **Complementary Charge Transport Channels**

Holes localized in host Electrons localized in NPs

Hole transport in host

Electron transport: NP->NP

Complementary charge transport channels are formed

Quantum Confinement impeding transport: transcended by complementary channels reducing recombination

4.5. Towards Atomic Layer Deposition of ZnS on Ge films

Carter Lab:

Summary

Multiple Exciton Generation is a promising solar paradigm

Quantum Confinement Dilemma: QC enhances Coulomb/MEG, but enhances the gap and makes charge extraction harder

Transcending QCD is possible:

1. Surface reconstruction of NPs: decreases gap, preserves MEG

2. Shape engineering of NPs (from dots to rods): decreases gap, increases number of allowed transitions

3. Exotic core phase NPs: decreases gap, increases Coulomb/MEG

4. Embedding NPs in host matrix: interface changes type I -> type II: complementary charge transport channels form, reduce recombination

