A Deliberate Journey: Adapting Tools of Basic Science to Make Better Solar Cells, Hybrid Cars and Medical Devices

basic science

1

A Deliberate Journey: Adapting Tools of Basic Science to Make Better Solar Cells, Hybrid Cars and Medical Devices

genuine utility

basic science

basic science

Five pathways of basic science tools making direct impact in renewable energy and medicine

1. Strongly interacting electrons in perovskites	Boosting efficiency of energy conversion in solar cells
2. Metal-Insulator Transition	Improving charge extraction from solar cells
3. Quantum glassy dynamics	Mitigating performance degradation of world record holder Si solar cells
4. Renormalization group and scaling	Developing better magnets for the electromotor of the Toyota Prius
5. Test of Relativity and Nobel- winning femtosecond lasers	Creating LASIK and laser cataract eye surgery

UC Davis/Theory: F. Gygi, M. Voros, GTZ UC Davis/Expt: S. Kauzlarich, E. Muthuswamy UC Santa Cruz: S. Carter, C. Church, I. Carbone

1. Boosting Solar Absorption Efficiency by Strongly Interacting Electrons in Perovskites

- 1. No absorption below gap: photon wasted
- 2. Absorption to bottom of conduction band: optimal
- 3. Absorption high into band: excess energy to phonons heats cell

Optimization of gap: max efficiency: **31**%

To boost efficiency substantially: New physics needed: **3**rd **generation PV**

Break the Ruling PV Paradigm: Get two Electrons for One Photon

Carrier Multiplication (CM):

high-above gap photon excites electron that relaxes by exciting 2nd/3rd electron

CM boosts absorption efficiency at high energies. Theoretical max: 44%, instead of 31%

Carrier Multiplication is driven by Strong Interactions

Carrier Multiplication requires enhanced Coulomb interaction: Quantum Confinement in Nanoparticles

Nanoparticles from inherently high PV efficiency bulk: Perovskites: 22.7%

Colloidal Nanoparticle Solar Cells Broke 10% Psychological Barrier in 2015, now 13.4%

Best Research-Cell Efficiencies

Colloidal Nanoparticle Solar Cells are promising platform for the Full Spectrum Boost Project

Carrier multiplication in Nanoparticles: Discovery, Status

Nanoparticles proven Beard (2011): Report of consensus

QCD - The Quantum Confinement Dilemma in Nanoparticle Solar Cells

The Full Spectrum Boost Project: Path towards synergetic 55%

Transcending competing paradigms in nanoparticle solar cells: Integrating CM+IB boosted absorption with Transport

Unified Transport Theory: Integrating band & hopping transport Ab initio-based Multi-scale Modeling Full Spectrum Boost: Integrating the Intermediate Band & Carrier Multiplication Paradigms

Band transport: ab initio-based semi-classical Boltzmann theory Hopping transport: ab initio-based Marcus/Miller-Abr. kinetic Monte-Carlo Low energy boost: Intermediate Band in NP solar cells High energy boost: Carrier Multiplication in NP solar cells

1.a Compensate Gap-Enhancement without Reducing Coulomb Strength: Reconstruction

Reconstruction

- compensates gap enhancement
- preserves enhanced Coulomb/MEG

Voros, Galli, GTZ Phys. Rev. B, 2013

13

1.b Reduce Gap by Lowering NP Symmetry: More Allowed Transitions

Many transitions forbidden by symmetry-driven selection rules Lowering symmetry of nanoparticles allows more transitions:

Nanorods: lower CM onset energy; enhanced CM at higher energy

Klimov, Cui

Gali, Kaxiras, Zimanyi, Meng, Phys. Rev. B 2010

1.c Reduce Gap by using Bulk-Gapless Phases: Exotic Core Phase Si/Ge NPs

Wippermann, Voros, Gali, Rocca, Zimanyi, Galli Phys. Rev. Lett. **110**, 046804 (2013)

2. Boosting carrier extraction by driving CNP solids through Metal-Insulator Transition

PbSe NP film - Atomic Layer Deposition: Mobility exhibits MIT

Law group Nature, **524**, 450 (2015)

PbSe NP film - Au/Ag CNPs substitution: Mobility exhibits MIT

Kagan, Murray group Nature, **524**, 450 (2015)

Metal-Insulator Transition in CNP solids

P doping of Si NPs: Localization length exceeds CNP diameter

Kortshagen, Shklovski Nature Materials, **11**, 299 (2015) Van der Zant, Siebbeles group Nature Nanotech, **6**, 733 (2011)

HiNTS: Hierarchical Nanoparticle Transport Simulator with Kinetic Monte Carlo

Approaching the Metal-Insulator Transition from the Hopping regime: "Overlap Energy"

(E_b-E_a) > Overlap Energy (OE): Thermally activated hopping transition

 (E_b-E_a) < Overlap Energy (OE): Metallic, non-activated quantum transition

Qu, Voros, Zimanyi, Sci. Rep. 2017

Metal-Insulator Transition: Nanoparticles with metallic couplings percolate

Mobility exhibits Metal-insulator Transition

Collapse of effective gap T₀ indicates **MIT**

Effective gap T_0 as a function of OE/ σ (Overlap energy/width of site energy distribution), for different e/NP densities

Possible interpretation: MIT as a Quantum Phase Transition

Gap goes to zero before percolation completed?

Geometric Percolation transition onset

Alternative: MIT as a Quantum Percolation transition

One component system Mobility σ is critical: $\sigma \sim (c-c^*)^{\gamma}$

Webman et al, PRB, 11, 2885 (1975)

Two component system: Mobility has critical crossover:

$$\sigma \sim (\sigma_i / \sigma_m)^s \phi[(x - x_c)(\sigma_i / \sigma_m)^m]$$

Efros, Shklovskii, Phys.Stat.Sol. 76,475 (1976)

Quantum vs. Percolation: formal difference

Quantum critical: Criticality in exponent: average gap experienced by electrons goes to zero

$$\sigma_{crit}(x,T) = e^{-T_0(x_c - x)^{\gamma/T}}$$

Quantum percolation: Criticality in pre-exponent: average number of hopping steps in conducting path goes to zero, gap remains finite

$$\sigma_{crit}(x,T) = \frac{\sigma_{non-crit}}{1 + a(x_c - x)e^{T_0/T}}$$

Metal-Insulator Transition in NP FETs: Quantum Criticality vs. Quantum Percolation

The quantum criticality & the quantum percolation theories yield different phase boundaries

Only the quantum percolation picture is consistent with the geometric percolation of metallic bonds.

Qu, Voros, Zimanyi, Sci. Rep. 2017