3. Quantum Glassy Dynamics in world-record 26% Si PV

Light-induced defect generation drives performance degradation, delays market entry of world-record HIT Si PV

Hydrogen escapes Si (di-)vacancies, leaves behind dangling bonds that act as recombination defects for PV

Si Divacancy

H escaping divacancy across barrier

Defect Dynamics

Structure: CHASSM; Barriers: LAMMPS

Best structure generator: CHASSM (Computational Hydrogenated Amorphous Structure Maker) code, developed at MIT.

Based on WWW code, developed at UC Davis

More agile code: LAMMPS, can model atom dynamics

Barrier determination: Nudged Elastic Band

Locating defects, capturing escape times

Void (green) in a-Si:H with density 1.91 g/cm³

Escape path, found by Nudged Elastic Band

Escape time statistics, spans 8 decades

Impact of defect density n_{def}(t) on Voc

This curve translates the defect density $n_{def}(t)$ into a time dependent Voc degradation

Slow defect generation, control defect density to make HIT Si PV reliable

Effective lifetime (black) and V_{OC} (red) for a-Si/c-Si HJ solar cells deposited by RF or DC plasma for different H dilution ratios R_{H} .

Note steep edge at $R_H = 4$. V_{oc} imroved by 50 mV.

4. Renormalization Group helps Permanent Magnet Development for Toyota Prius

Rare earth elements are rare

Hierarchical simulation of reversal in permanent magnets

Renormalization/Scaling theory of Micromagnetics

Finite element micromagnetics (FEM) gets Tc very wrong for classes of materials, such as permalloy.

Reason: FEM parameters are taken from microscopic/macroscopic values and only trivially rescaled to *L*, the cell size of FEM

Idea: renormalize the FEM parameters of cells with size L also with fluctuations of wavelengths smaller than L: "integrate out spin fluctuations to length L"

$$E(\{\vec{S}\}) = \frac{J}{2} \int d^d x (\nabla \hat{s}(\vec{x}))^2$$
$$\frac{\partial T}{\partial l} = -\epsilon T + aT^2$$

dimensional rescale fluctuations

Renormalization/Scaling theory of Micromagnetics

Renormalization at low T, in a limited magnetic field *h*: $dT(l)/dl = [-\epsilon + I(T(l), h(l))]T(l),$ dh(l)/dl = 2h(l),

Upper Fig.: FEM simulation of magnetization with cell sizes *L*=2, 4, and 8nm gives size dependent results.

Lower Fig.: FEM with same *L*=2, 4, and 8 nm cell sizes but performed with renormalized parameters gives cell-size independent results.

Reversal, governed by domain wall-mediated nucleation, not captured well by spin waves

Reversal governed by fluctuations on multiple hierarchical scales

Spin-Wave Renormalization of Finite Element Cell Parameters: Nd₂Fe₁₄B

$$\frac{M(L)}{M(exp)} = 1 + \frac{2\mu_B}{M(exp)} \frac{V}{(2\pi)^3} \iiint_{-\frac{\pi}{L}}^{\frac{\pi}{L}} dk \left[exp\left(\frac{E(k)}{kT}\right) - 1 \right]^{-1}$$

$$E^{-}(q) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} \bigvee_{-\frac{\pi}{L}}^{\frac{\pi}{L}} dk \left[exp\left(\frac{E(k)}{kT}\right) - 1 \right]^{-1}$$

$$E^{-}(q) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} \bigvee_{-\frac{\pi}{L}}^{\frac{\pi}{L}} dk \left[exp\left(\frac{E(k)}{kT}\right) - 1 \right]^{-1}$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV } \text{Å}^2 q^2$$

$$\frac{V}{(2\pi)^3} (161 - 129) = 0.76 \text{ meV} + 107.3 \text{ meV}$$

Spin Wave Renormalization induces 10-20% scaledependent renormalization of parameters

Hierarchical nanostructure, developed for Toyota

Fe-rich grainNd-rich grainboundary phaseboundary phase

Our magnet is in the Toyota Prius

Scaling-correction to coercive field

New Toyota magnet cuts dependence on key rare earth metal for EV motors

Reuters Staff

Reuters Feb. 20, 2018 💌 f

(This February 20 story corrects paragraph 2 to say neodymium is used in permanent magnets, not batteries)

FILE PHOTO: A Toyota Prius (R) and a Prius V are displayed at the North American International Auto Show in Detroit, January 12, 2016. REUTERS/Mark Blinch/File Photo

5. Femtosecond lasers, developed by Mourou and Strickland, awarded Nobel in 2018

High precision medical imaging also needed: Test of relativity provides key

Imaging transparent tissue is big challenge for using femto lasers for eye surgery

Michelson Morley interferometer, to test aether, leading to the Theory of Special Relativity (1887) Optical Coherence Tomography (OCT), to provide in-depth images of transparent eye tissue (1987-1991)

Nobel winning femtosecond lasers restored the vision of more than a million patients

Femtosecond laser for precision cutting + OCT for unprecedented imaging: the LenSx laser

The LenSx femtosecond laser restored the vision of more than a million patients

Five pathways of basic science tools making direct impact in renewable energy and medicine

1. Strongly interacting electrons in perovskites	Boosting efficiency of energy conversion in solar cells
2. Metal-Insulator Transition	Improving charge extraction in solar cells
3. Quantum glassy dynamics	Mitigating performance degradation of world record holder Si solar cells
4. Renormalization group and scaling	Developing better magnets for the electromotor of the Toyota Prius
5. Test of Relativity + Nobel- winning femtosecond lasers	Creating LASIK and laser cataract eye surgery