
3. Quantum Glassy Dynamics in world-record 26% Si PV

In spite of rapid rise in efficiency and 
the world record, SHJ (HIT) Si PV cells 
are not accepted by the market. Why?
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Light-induced defect generation drives performance 
degradation, delays market entry of world-record HIT Si PV
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Fig. 1. The film electron µτ products and the corresponding fill factor (FF) in
an annealed 4000 Å p-i-n solar cell as a function of illumination intensity up to
1 sun. Observe the inverse behavior of µτ and FF during an increase in Quasi
Fermi level splitting.

the subgap absorption measurements these were not carried out
under continuous with 1-sun illumination. Rather a sequence
of longer and longer degradations with annealing out of the
created light-induced defects prior to subsequent illumination.
The reproducible annealed states of the films were obtained af-
ter annealing them at 170 ◦C for 4 h. The derivatives of the
DBP measurement results were fitted with three Gaussians, the
presence of which was indicated in the self-consistent fitting of
previous results on a-Si:H films [4].

In solar cells, the carrier recombination was not characterized
with just solar cell characteristics but was also measured directly
with SRH recombination. The regions of the gap where the states
act as recombination centers were defined by controlling the QF
splitting with, intensity of illumination in film photoconductivi-
ties, and forward bias in SRH measurements. Such QF splitting
enabled the contributions to carrier recombination of different
states to be characterized for electron µτ products from pho-
toconductivity and holes from SRH measurements. Because of
the large number of the 2-mm2 cells on any given substrate, it
was possible to carry out a new set of experiments on any given
cell without having to anneal out any prior degradation.

IV. RESULTS AND DISCUSSION

The contribution of the continuous distribution gap states in
a-Si:H to carrier recombination in these films and solar cells
was addressed in the annealed state by selectively converting
the gap states, at and away from midgap, into recombination
centers by increasing the QF splitting with the level of illumina-
tion [18]. Fig. 1 shows the results for the electron µτ products
obtained from the photocurrents in an a-Si:H film as the illu-
mination is increased up to the level of 1 sun. Also shown are
the corresponding results for the FF of a 4000 Å p-i-n solar cell
up to 1-sun illumination with a QF splitting of 0.93 eV. There
is a striking contrast between the results for electron lifetimes,
τn , and those of the FF which is determined primarily by the
hole lifetimes, τp . In the case of the films, there is the generally
observed decrease in τn with illumination, but in addition there
is a clear absence of any further decrease once the QF splitting
reaches the value generated by ∼ 10− 2 sun. This shows that the

Fig. 2. The light induced changes in the densities of the A, B, and C states,
during 1 sun degradation at 25 ◦C, obtained from subgap absorption measured
with DBP. In the inset are the energy distributions of these states shown relative
to the conduction band.

additional states introduced away from midgap do not act as ef-
ficient electron recombination centers as τn remains determined
by what may be called midgap states.

The results on the FF and, consequently, on τp indicate quite
an opposite role for the two sets of gap states. While the midgap
states act as recombination centers, the FF increases with il-
lumination, as is the case for c-Si cells [19], indicating that
introduction of these recombination centers has a small pertur-
bation on hole lifetimes. However, after reaching the ∼ 10− 2 sun
illumination, the states away from midgap become hole recom-
bination centers; the FF begins and then continues to decrease.
This is a clear indication that those states, which have negligible
effect on τn , have large hole capture cross sections that limit the
FF under 1-sun illumination. The results also clearly show that
the midgap states, which for a long time have been recognized
as efficient electron recombination centers, have a very much
smaller effect on holes than the gap states located away from
midgap.

These two sets of gap states and their light-induced changes in
the a-Si:H films were identified in a detailed study carried out by
Niu [12] who characterized their subgap absorption spectra with
DBP and analysis that took into account the presence of multiple
defect states. In these studies, where the states that anneal out
at room temperature were taken into account, three different
Gaussian distributions were identified from the derivatives of
α(hν). In this a-Si:H with the bandgap of 1.8 eV, there are two
states at midgap, A at 0.05 eV above and the B at 0.095 eV
below midgap, with the third C states 0.39 eV below midgap.
The energy distributions of these three gap states after 30 min of
1-sun illumination at 25 ◦C are shown relative to the conduction
band in the inset of Fig. 2. In this a-Si:H, with a bandgap of
1.8 eV, the peaks of the Gaussians relative to midgap are: A at
0.05 eV above; B at 0.095 eV below; and C at 0.39 eV below.
Since the A and B states are located very close to 0.9 eV below
the conduction band, they can be termed as the “midgap” states.
Even though the C states are close to the valence band tail, it
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Structure: CHASSM; Barriers: LAMMPS

Best structure generator: CHASSM 
(Computational Hydrogenated Amorphous 
Structure Maker) code, developed at MIT.

Based on WWW code, developed at UC Davis

More agile code: LAMMPS, 
can model atom dynamics



Barrier determination: Nudged Elastic Band

Starting path of H escapeLowest energy path of H escape

Barrier = E(green)-E(blue) 

Distribution of Barriers P(Ebarrier)
Distribution of Escape times t: 

P(t) ~ P(t0 exp(Ebarrier/kT))



Locating defects, capturing escape times

Void (green) in a-Si:H
with density 1.91 g/cm3

Escape path, found by 
Nudged Elastic Band



Escape time statistics, spans 8 decades



Impact of defect density ndef(t) on Voc

3

This curve translates the defect density ndef(t) 
into a time dependent Voc degradation



Slow defect generation, 
control defect density to make HIT Si PV reliable

Effective lifetime (black) and VOC
(red) for a-Si/c-Si HJ solar cells
deposited by RF or DC plasma
for different H dilution ratios RH.

Note steep edge at RH = 4.
Voc imroved by 50 mV.



4. Renormalization Group helps Permanent Magnet 
Development for Toyota Prius



Rare earth elements are rare
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Renormalization/Scaling theory of Micromagnetics

Finite element micromagnetics (FEM) 
gets Tc very wrong for classes of materials, 
such as permalloy.

Reason: FEM parameters are taken from 
microscopic/macroscopic values and only 
trivially rescaled to L, the cell size of FEM 

Idea: renormalize the FEM parameters of 
cells with size L also with fluctuations of 
wavelengths smaller than L: “integrate out 
spin fluctuations to length L”

E!f~SSg" # J
2

Z

ddx!rŝs! ~xx""2; (3)

where J measures the exchange strength. Equation (2) is
then the partition function of the nonlinear sigma model
(NL!M) with three components of the field [7].

Aside from the high-wave number (short-distance) cut-
off, !, this model has only one parameter—the dimen-
sionless temperature T $ kB ~TT=J!2%d . The model
undergoes its phase transition when this parameter as-
sumes a critical value, Tc. The RG equation describing the
change of T as the NL!M is coarse grained by eliminat-
ing all Fourier components of ~SS! ~xx" whose wave numbers ~qq
exceed !=b (i.e., !=b < j ~qq j & !) has been calculated
[7,8] as a double power series in T and " $ d % 2:

@T=@l # %"T ' aT2 ' ( ( ( : (4)

Here the positive constant a # 1=2#, b is a dimensionless
scale factor greater than unity, and l $ ln!b".

For small T and ", the terms explicitly displayed in (4)
are the dominant ones. In fact these terms capture the
qualitative physics of the model quite generally.
Equation (4) has fixed points at T # 0, T # 1, and T #
T) $ "=a, respectively controlling the low-temperature
phase, the high-temperature phase, and the critical point.
When the original microscopic value of T, viz., T!l # 0",
is <T) (>T)), then T!l" ! 0 ( ! 1), as l increases,
indicating that the system is in the low-T, ferromagnetic
(high-T, paramagnetic) phase. Only when T!0" # T) does
T!l" remain fixed at T), meaning that the critical fixed
point is unstable, and that T) is in fact the dimensionless
critical temperature, Tc: Tc # 2#"'O!"2" [7]. For any
given values of b (#el) and T!0", moreover, Eq. (4) allows
one to calculate the dimensionless temperature T!l" that
produces, on the coarse-grained scale, static equilibrium
properties equivalent to those of the starting microscopic
problem with l # 0 and temperature T!0".

Solving (4) for T!l" yields the explicit result

T!l" # Tc=*1' e"l!Tc=T!0" % 1"+: (5)

T!l" and T!0" correspond both at the low-temperature
fixed point, T!0" # 0, and at the critical fixed point,
T!0" # Tc. The unphysical divergence of T!l" at a finite
value of T!0" in Eq. (5) results from our using at large T
the small-T solution of Eq. (4). The true T!l" increases
monotonically with T!0", diverging only at T!0" # 1.

Compare now this coarse graining with those typically
used in simulations of the LLG equations. Such simula-
tions generally use variables that represent regions en-
compassing 10–30 spins on a side, so that b, 10–30. The
rescaling of the exchange interactions, and hence of the
reduced temperature, is typically carried out at the level
of dimensional analysis, and omits the important correc-
tions that come from the elimination of the high-wave
vector modes. This amounts to truncating Eq. (4), which
becomes @T!l"=@l # %"T!l", yielding T!l" # T!0"e%"l.

In this case T!l" reaches the critical temperature Tc only
when T!0" # T0

c , which exceeds Tc by the factor e"l. Thus,
this approximation overestimates the value of Tc by e"l.
For the physically relevant case of " # 1 and l # 2:30, Tc
is overestimated by a factor of roughly 10, which is just
the sort of error observed in practice [6].

This explains the order-of-magnitude errors in Tc in-
ferred from micromagnetic simulations using block spins.
Unfortunately, in practice the approximation Tc # 2#"
from Eq. (4) does not predict Tc accurately in the physi-
cally relevant case " # 1. If, as is almost always the case,
however, acceptable experimental or numerical estimates
of Tc for the material in question exist, then Eq. (5) with
" # 1 can be used to provide a good approximation to
T!l", at least for T!0"’s not too much greater than Tc. This
is illustrated in Fig. 1, which shows equilibrium magne-
tization (M) versus ~TT curves for a model Permalloy cube
of size !48 nm"3, calculated from the 3D NL!M of Eq. (3),
spatially discretized to give model (6) with applied field
~HHA # 0. The block size was !r # 3 nm"3; other parameter

values given below Eq. (8). The curves with square and
oval symbols, respectively, result from choosing ex-
change constants A # 9:63- 10%12 J=m, the rough, un-
renormalized value for Permalloy, and A!b" # ! ~TT=b ~TTc" -
*1' b! ~TTc= ~TT % 1"+A, the renormalized value that follows
from Eq. (5) with " # 1, b # 10 [the factor relating the
single spin scale ( , 0:3 nm) to the 3 nm scale], and ~TTc #
1000 K, the rough Curie temperature for Permalloy. The
former curve overestimates Tc by roughly the predicted
factor b # 10, while the latter produces a very reasonable
M vs ~TT curve.

Of course, micromagnetic simulations are more
commonly used to study magnetic behavior not near
criticality but for kB ~TT . J!2%d . Here too, the block
size of the calculation influences the result. For example,
Fig. 2(a) shows M vs HA curves computed for a model 2D
magnetic slab with an energy function consisting of iso-
tropic nearest neighbor exchange interactions and an ap-
plied field, ~HHA. The slab has thickness a, and is divided up
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FIG. 1. M vs ~TT curves for the model Permalloy cube, from
LLG Eq. (6), with parameters as given in text, and unrenor-
malized (square symbols) and renormalized (oval symbols)
values of the exchange constant.
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where J measures the exchange strength. Equation (2) is
then the partition function of the nonlinear sigma model
(NL!M) with three components of the field [7].

Aside from the high-wave number (short-distance) cut-
off, !, this model has only one parameter—the dimen-
sionless temperature T $ kB ~TT=J!2%d . The model
undergoes its phase transition when this parameter as-
sumes a critical value, Tc. The RG equation describing the
change of T as the NL!M is coarse grained by eliminat-
ing all Fourier components of ~SS! ~xx" whose wave numbers ~qq
exceed !=b (i.e., !=b < j ~qq j & !) has been calculated
[7,8] as a double power series in T and " $ d % 2:

@T=@l # %"T ' aT2 ' ( ( ( : (4)

Here the positive constant a # 1=2#, b is a dimensionless
scale factor greater than unity, and l $ ln!b".

For small T and ", the terms explicitly displayed in (4)
are the dominant ones. In fact these terms capture the
qualitative physics of the model quite generally.
Equation (4) has fixed points at T # 0, T # 1, and T #
T) $ "=a, respectively controlling the low-temperature
phase, the high-temperature phase, and the critical point.
When the original microscopic value of T, viz., T!l # 0",
is <T) (>T)), then T!l" ! 0 ( ! 1), as l increases,
indicating that the system is in the low-T, ferromagnetic
(high-T, paramagnetic) phase. Only when T!0" # T) does
T!l" remain fixed at T), meaning that the critical fixed
point is unstable, and that T) is in fact the dimensionless
critical temperature, Tc: Tc # 2#"'O!"2" [7]. For any
given values of b (#el) and T!0", moreover, Eq. (4) allows
one to calculate the dimensionless temperature T!l" that
produces, on the coarse-grained scale, static equilibrium
properties equivalent to those of the starting microscopic
problem with l # 0 and temperature T!0".

Solving (4) for T!l" yields the explicit result

T!l" # Tc=*1' e"l!Tc=T!0" % 1"+: (5)

T!l" and T!0" correspond both at the low-temperature
fixed point, T!0" # 0, and at the critical fixed point,
T!0" # Tc. The unphysical divergence of T!l" at a finite
value of T!0" in Eq. (5) results from our using at large T
the small-T solution of Eq. (4). The true T!l" increases
monotonically with T!0", diverging only at T!0" # 1.

Compare now this coarse graining with those typically
used in simulations of the LLG equations. Such simula-
tions generally use variables that represent regions en-
compassing 10–30 spins on a side, so that b, 10–30. The
rescaling of the exchange interactions, and hence of the
reduced temperature, is typically carried out at the level
of dimensional analysis, and omits the important correc-
tions that come from the elimination of the high-wave
vector modes. This amounts to truncating Eq. (4), which
becomes @T!l"=@l # %"T!l", yielding T!l" # T!0"e%"l.

In this case T!l" reaches the critical temperature Tc only
when T!0" # T0

c , which exceeds Tc by the factor e"l. Thus,
this approximation overestimates the value of Tc by e"l.
For the physically relevant case of " # 1 and l # 2:30, Tc
is overestimated by a factor of roughly 10, which is just
the sort of error observed in practice [6].

This explains the order-of-magnitude errors in Tc in-
ferred from micromagnetic simulations using block spins.
Unfortunately, in practice the approximation Tc # 2#"
from Eq. (4) does not predict Tc accurately in the physi-
cally relevant case " # 1. If, as is almost always the case,
however, acceptable experimental or numerical estimates
of Tc for the material in question exist, then Eq. (5) with
" # 1 can be used to provide a good approximation to
T!l", at least for T!0"’s not too much greater than Tc. This
is illustrated in Fig. 1, which shows equilibrium magne-
tization (M) versus ~TT curves for a model Permalloy cube
of size !48 nm"3, calculated from the 3D NL!M of Eq. (3),
spatially discretized to give model (6) with applied field
~HHA # 0. The block size was !r # 3 nm"3; other parameter

values given below Eq. (8). The curves with square and
oval symbols, respectively, result from choosing ex-
change constants A # 9:63- 10%12 J=m, the rough, un-
renormalized value for Permalloy, and A!b" # ! ~TT=b ~TTc" -
*1' b! ~TTc= ~TT % 1"+A, the renormalized value that follows
from Eq. (5) with " # 1, b # 10 [the factor relating the
single spin scale ( , 0:3 nm) to the 3 nm scale], and ~TTc #
1000 K, the rough Curie temperature for Permalloy. The
former curve overestimates Tc by roughly the predicted
factor b # 10, while the latter produces a very reasonable
M vs ~TT curve.

Of course, micromagnetic simulations are more
commonly used to study magnetic behavior not near
criticality but for kB ~TT . J!2%d . Here too, the block
size of the calculation influences the result. For example,
Fig. 2(a) shows M vs HA curves computed for a model 2D
magnetic slab with an energy function consisting of iso-
tropic nearest neighbor exchange interactions and an ap-
plied field, ~HHA. The slab has thickness a, and is divided up
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FIG. 1. M vs ~TT curves for the model Permalloy cube, from
LLG Eq. (6), with parameters as given in text, and unrenor-
malized (square symbols) and renormalized (oval symbols)
values of the exchange constant.
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where J measures the exchange strength. Equation (2) is
then the partition function of the nonlinear sigma model
(NL!M) with three components of the field [7].

Aside from the high-wave number (short-distance) cut-
off, !, this model has only one parameter—the dimen-
sionless temperature T $ kB ~TT=J!2%d . The model
undergoes its phase transition when this parameter as-
sumes a critical value, Tc. The RG equation describing the
change of T as the NL!M is coarse grained by eliminat-
ing all Fourier components of ~SS! ~xx" whose wave numbers ~qq
exceed !=b (i.e., !=b < j ~qq j & !) has been calculated
[7,8] as a double power series in T and " $ d % 2:
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Here the positive constant a # 1=2#, b is a dimensionless
scale factor greater than unity, and l $ ln!b".

For small T and ", the terms explicitly displayed in (4)
are the dominant ones. In fact these terms capture the
qualitative physics of the model quite generally.
Equation (4) has fixed points at T # 0, T # 1, and T #
T) $ "=a, respectively controlling the low-temperature
phase, the high-temperature phase, and the critical point.
When the original microscopic value of T, viz., T!l # 0",
is <T) (>T)), then T!l" ! 0 ( ! 1), as l increases,
indicating that the system is in the low-T, ferromagnetic
(high-T, paramagnetic) phase. Only when T!0" # T) does
T!l" remain fixed at T), meaning that the critical fixed
point is unstable, and that T) is in fact the dimensionless
critical temperature, Tc: Tc # 2#"'O!"2" [7]. For any
given values of b (#el) and T!0", moreover, Eq. (4) allows
one to calculate the dimensionless temperature T!l" that
produces, on the coarse-grained scale, static equilibrium
properties equivalent to those of the starting microscopic
problem with l # 0 and temperature T!0".

Solving (4) for T!l" yields the explicit result

T!l" # Tc=*1' e"l!Tc=T!0" % 1"+: (5)

T!l" and T!0" correspond both at the low-temperature
fixed point, T!0" # 0, and at the critical fixed point,
T!0" # Tc. The unphysical divergence of T!l" at a finite
value of T!0" in Eq. (5) results from our using at large T
the small-T solution of Eq. (4). The true T!l" increases
monotonically with T!0", diverging only at T!0" # 1.

Compare now this coarse graining with those typically
used in simulations of the LLG equations. Such simula-
tions generally use variables that represent regions en-
compassing 10–30 spins on a side, so that b, 10–30. The
rescaling of the exchange interactions, and hence of the
reduced temperature, is typically carried out at the level
of dimensional analysis, and omits the important correc-
tions that come from the elimination of the high-wave
vector modes. This amounts to truncating Eq. (4), which
becomes @T!l"=@l # %"T!l", yielding T!l" # T!0"e%"l.

In this case T!l" reaches the critical temperature Tc only
when T!0" # T0

c , which exceeds Tc by the factor e"l. Thus,
this approximation overestimates the value of Tc by e"l.
For the physically relevant case of " # 1 and l # 2:30, Tc
is overestimated by a factor of roughly 10, which is just
the sort of error observed in practice [6].

This explains the order-of-magnitude errors in Tc in-
ferred from micromagnetic simulations using block spins.
Unfortunately, in practice the approximation Tc # 2#"
from Eq. (4) does not predict Tc accurately in the physi-
cally relevant case " # 1. If, as is almost always the case,
however, acceptable experimental or numerical estimates
of Tc for the material in question exist, then Eq. (5) with
" # 1 can be used to provide a good approximation to
T!l", at least for T!0"’s not too much greater than Tc. This
is illustrated in Fig. 1, which shows equilibrium magne-
tization (M) versus ~TT curves for a model Permalloy cube
of size !48 nm"3, calculated from the 3D NL!M of Eq. (3),
spatially discretized to give model (6) with applied field
~HHA # 0. The block size was !r # 3 nm"3; other parameter

values given below Eq. (8). The curves with square and
oval symbols, respectively, result from choosing ex-
change constants A # 9:63- 10%12 J=m, the rough, un-
renormalized value for Permalloy, and A!b" # ! ~TT=b ~TTc" -
*1' b! ~TTc= ~TT % 1"+A, the renormalized value that follows
from Eq. (5) with " # 1, b # 10 [the factor relating the
single spin scale ( , 0:3 nm) to the 3 nm scale], and ~TTc #
1000 K, the rough Curie temperature for Permalloy. The
former curve overestimates Tc by roughly the predicted
factor b # 10, while the latter produces a very reasonable
M vs ~TT curve.

Of course, micromagnetic simulations are more
commonly used to study magnetic behavior not near
criticality but for kB ~TT . J!2%d . Here too, the block
size of the calculation influences the result. For example,
Fig. 2(a) shows M vs HA curves computed for a model 2D
magnetic slab with an energy function consisting of iso-
tropic nearest neighbor exchange interactions and an ap-
plied field, ~HHA. The slab has thickness a, and is divided up
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FIG. 1. M vs ~TT curves for the model Permalloy cube, from
LLG Eq. (6), with parameters as given in text, and unrenor-
malized (square symbols) and renormalized (oval symbols)
values of the exchange constant.
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Renormalization/Scaling theory of Micromagnetics

Renormalization at low T, in a 
limited magnetic field h:

Upper Fig.: FEM simulation of 
magnetization with cell sizes L=2, 4, 
and 8nm gives size dependent 
results.

Lower Fig.: FEM with same L=2, 4, 
and 8 nm cell sizes but performed 
with renormalized parameters gives 
cell-size independent results. Grinstein, Koch, PRL, 2003

into a square lattice of blocks of dimension r! r! a,
i.e., of volume V " ar2. The magnetic moment of the ith
block, ~SSi, is ~SSi " MsVŝsi, where Ms is the saturation
magnetization, and ŝsi a unit vector. Calculations were
performed using the following spatially discretized ver-
sion of Eq. (1), with open boundary conditions:

@ ~SSi#t$=@t "%! ~SSi !"0
~HHtot
i % #!ŝsi ! # ~SSi !"0

~HHtot
i $

& !"0
~SSi ! ~$$i: (6)

Here the net field experienced by ~SSi is ~HHtot
i " ~HHA &

~HHex , where ~HHex " #2A=r2Ms"0$
P

jŝsj, with A the ex-
change constant and

P

j a sum over blocks j that border
i, and h~$$i#t$ ~$$j#0$i" D1

$
%i;j%#t$, with D " 2kB ~TT#=

!"2
0MsV; it follows [5,10] that as t ! 1 the system

achieves the equilibrium Boltzmann distribution at tem-
perature ~TT for the energy function of the nearest neighbor
Heisenberg model in an applied field:

EHeis " %JH
X

hi;ji
ŝsi '̂ssj % ~HHH '

X

i

ŝsi; (7)

with
P

hi;jia sum on near-neighbor spin pairs, and

JH ( 2Aa; HH ( "0HAMsar2: (8)

Shown in Fig. 2(a) are three equilibrium M vs HA
curves, computed from Eq. (6) at ~TT " 300) K with a "
2 nm and block sizes: r " 2, 4, and 8 nm. In each case
# " 0:1, A " 9:63! 10%12 J=m, "0 " 4&! 10%7 H=m,
"0Ms " 1 T, and the area of the slab is 64 nm! 64 nm.

A 4th order predictor-corrector method with a discrete
time step of 5! 10%14 s and typical equilibration times of
0.1 nsec was used. It is clear that the three results are
systematically different, but unclear how they are con-
nected to one another or to the true M vs H curves for the
slab. To apply the RG to these questions, note that in
Fourier space the exchange term of EHeis is proportional
to

P

~qq!
P

i"x;y cos#qir$"jŝs# ~qq$j2, where ŝs# ~qq$ is the Fourier
transform of ŝsi. Writing cos#qir$ * 1% #qir$2=2, and ap-

proximating the square Brillouin zone of model (7) by a
circle of radius !* 1=r gives EHeis the form of the 2D
NL'M (3), with the high-momentum cutoff considered
earlier, and an added applied field, % ~HH '

R

d2xŝs# ~xx$.
The equilibrium magnetization, M#T;H$, of this

model, as a function of the dimensionless temperature
T and field h ( H=J!2, satisfies the RG equation [11]:

M#T; h$ " (#l$M!T#l$; h#l$": (9)

Neither the rescaling factor (#l$ nor the l-dependent field
and dimensionless temperature, h#l$ and T#l$ can be
calculated exactly. However, in d " 2& ) dimensions,
they have, again, been calculated [7,8] in a double power
series expansion in ) and T, with the result:

(#l$ " e%
R

l

0
I!T#l0$;h#l0$"dl0 ; (10)

where I#T; h$ ( T=+2&#1& h$,, and T#l$ and h#l$ are
determined by the differential equations

dT#l$=dl " +%)& I!T#l$; h#l$",T#l$;
dh#l$=dl " 2h#l$;

(11)

with the initial conditions T#0$ " T and h#0$ " h.
In 2D, where ) " 0, Eqs. (11) can be solved to yield

T#l$ " T=+1& TX#l$=4&,; h#l$ " he2l; (12)

here X#l$ ( lnf1& he2l=#1& h$e2lg. The scale factor (#l$
in Eq. (10) is difficult to calculate exactly. However, in the
often realistic limit where h and T are both small com-
pared to unity, X#l$ reduces to %2l&O#h$, whereupon

(#l$ ! e%Tl=2&f1&O+hT=2&; #T=2&$2,g: (13)

In this limit, results (12) for fixed ~TT can be written J#l$ *
J#0$e%kB ~TTl=2&J#0$ and H#l$ *H#0$e2le%kB ~TTl=2&J#0$.

This explains qualitatively why the raw M vs HA
curves shown in Fig. 2(a) look so different: In addition
to omitting the ( ~TTl)-dependent corrections to J and H
required to make the different calculations equivalent, the
naive LLG computations omitted the scale factor (#l$. To
check that this works quantitatively, we recalculated from
Eq. (6) the M vs H curves for block sizes r " 4 nm and
r " 8 nm, using values of the exchange constant A " A#l$
related to the value, A#0$ " 9:63! 10%12 J=m, used at
r " 2 nm, by A#l$ " A#0$e%kB ~TTl=2&JH , for l " ln2 and l "
ln4, respectively. These 4 and 8 nm magnetizations were
then multiplied by the scale factors (#l$ " e%kB ~TTl=2&JH ,
and plotted against ekB ~TTl=2&JHHA. The results for 4 nm
(l " ln2) and 8 nm #l " ln4$ are plotted along with the
raw 2 nm data in Fig. 2(b). The three curves are essen-
tially indistinguishable. Thus the RG does excellently in
connecting micromagnetic data acquired with different
block sizes in our simple model, despite the approxima-
tions involved in relating model (6) to the NL'M model,
the fact that the quoted RG results are valid only in the
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into a square lattice of blocks of dimension r! r! a,
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& !"0
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required to make the different calculations equivalent, the
naive LLG computations omitted the scale factor (#l$. To
check that this works quantitatively, we recalculated from
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related to the value, A#0$ " 9:63! 10%12 J=m, used at
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(l " ln2) and 8 nm #l " ln4$ are plotted along with the
raw 2 nm data in Fig. 2(b). The three curves are essen-
tially indistinguishable. Thus the RG does excellently in
connecting micromagnetic data acquired with different
block sizes in our simple model, despite the approxima-
tions involved in relating model (6) to the NL'M model,
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Reversal, governed by domain wall-mediated nucleation, 
not captured well by spin waves

Perfect Nd2Fe14B grain
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Reversal governed by fluctuations on 
multiple hierarchical scales
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Spin-Wave Renormalization of
Finite Element Cell Parameters: Nd2Fe14B 
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FIG. 3. Spin-wave dispersion relation for NdqFe~48 plotted
as a function of q, = qc/2s in reduced lattice units [r.l.u.j
with c = 12.2 L (Refs. 14, 15). The points correspond to the
experimental results and the solid line serves as a guide to
the eye. The long-dashed and the short-dashed curves show
results of the micromagnetic theory with n~T ——2.48 x 10
Tm/A and nJiT = 0.55 x 10 Tm/A, respectively.

—2.10 x 10 J obtained by ab initio calculations, 2 the
resulting coupling constant is nRT = 2.48 x 10 Tm/A.
Magnetic measurements at room temperature are usu-
ally analyzed in terms of the effective anisotropy con-
stants Ki, K2, . . .without taking into account the two-
sublattice structure. Considering only the second-order
term of the anisotropy energy and small external fields,
the effective constant K,g ——Kq is related to the param-
eters of the two-sublattice model by

2KRKT
Kz +K~+

&RTMRMT
KRM~+ Kz MR

nRT MRMT (Mn+ MT )
1+2

(45)

With the experimental result of K,ir = 5.0 MJ/m and
the parameters given above Kn = 4.4 MJ/m is ob-
tained. The resulting spin-wave energies deduced &om
Eq. (31) are

E+ (q) = 18.1 meV + 39.2 meV A. q,
E' (q) = 0.76 meV+. 107.3 meV A. q,

and the energy of the local mode following from Eq. (30b)
is An = 13.46 meV. The acoustical mode E (q) is shown
in Fig. 3 as a long-dashed line. The gap energy Eo is in
reasonable agreement with the experimental result, while
the curvature of the dispersion relation is too small. Since
n~z is the only parameter which has not been determined
by an independent experiment, we varied the value of
n~z to obtain a fit of the experimental date. Taking
nIiT = 0.55 x 10 Tm/A from Eq. (45) the value of
K~ = 7.7 MJ/m is obtained; the spin-wave energies are

E+ (q) = 6.7 meV + 13.7 meV A q2,

E (q) = 0.82 meV + 132.8 meV A q,
and the energy of the localized excitation is A~ ——6.1
meV. The short-dashed line in Fig. 3 corresponds to this
fit. The value of the gap energy Eo is not very sensitive
to the variation of nRT in the present case and there-
fore we have chosen the value of n~T which leads to the
same curvature as the experimental curve. To summa-
rize, our analysis suggests a strong temperature depen-
dence of n~T having at room temperature approximately
one-fourth of its low-temperature value. Final conclu-
sions, however, can be drawn only if the high-energy ex-
citations E+ and A~ are considered as well. Preliminary
experimental results on this pointii show high intensities
of magnetic scattering at energies E ( 15 meV but the
resolution does not allow a detailed interpretation.

C. Rqreq4B at T 0 K

Our model is applied to the R~Feq48 compounds which
exhibit an anisotropy of the easy-axis type at low temper-
atures. The exchange fields and crystal-field parameters
of these compounds have been obtained by analyzing the
high-field magnetization curves of single crystals Th.e
various sets of parameters obtained by these analyses are
referred to as the models Y, G, 2' and R. Using
the results of the di6'erent models, the spin-wave ener-
gies are calculated and compared with recent neutron-
scattering data. ' 2 Up to now for the compounds with
R =Pr, ad, Tb,Dy only neutron-scattering experiments
using powder samples have been performed. Therefore
instead of the dispersion relations E+ (q) only peaks cor-
responding to the flat parts of the dispersion curve could
be observed [Figs. 4(a)—4(d)j. It is assumed that the
peaks originate &om the local mode, A~, the gap en-
ergies Eo+ of the optical and acoustical mode, and the
points where these modes are reaching the boundary of
the Brillouin zone. Since within the present paper only
spin waves at small q values are investigated, the latter
points cannot be identified.
The discussion is restricted to the case H = 0 and for

the T sublattice the values of MT = 1.24 x 10 A/m and
KT = 0.8 MJ/m reported for Y2Fei48 at T = 4 K have
been used. The magnetization M~ of the R sublattice
is calculated with Eq. (10b) using NJi ——8.47 x 102 /m
and the angular momentum J and the Lande factor gg of
the Bee ion shown in Table III. Prom the R-T exchange
Geld B „and the crystal-field parameters A suggested
by the models Y, G, and R, respectively, Loewenhaupt
et al. calculated the single-ion excitation energies A~
shown in Table IV. The coupling constants J~T and n~T
are related to B,„by Eqs. (19) and (17). To calculate
J~T we used Sz ——1.13 following Rom Eq. (10a) and
z~T ——16 which is more reasonable than z~T ——18 used
by many other authors. ' Note that, however, n~T is
directly related to B,„via

(46)

Ried 1994
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ally analyzed in terms of the effective anisotropy con-
stants Ki, K2, . . .without taking into account the two-
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term of the anisotropy energy and small external fields,
the effective constant K,g ——Kq is related to the param-
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With the experimental result of K,ir = 5.0 MJ/m and
the parameters given above Kn = 4.4 MJ/m is ob-
tained. The resulting spin-wave energies deduced &om
Eq. (31) are

E+ (q) = 18.1 meV + 39.2 meV A. q,
E' (q) = 0.76 meV+. 107.3 meV A. q,

and the energy of the local mode following from Eq. (30b)
is An = 13.46 meV. The acoustical mode E (q) is shown
in Fig. 3 as a long-dashed line. The gap energy Eo is in
reasonable agreement with the experimental result, while
the curvature of the dispersion relation is too small. Since
n~z is the only parameter which has not been determined
by an independent experiment, we varied the value of
n~z to obtain a fit of the experimental date. Taking
nIiT = 0.55 x 10 Tm/A from Eq. (45) the value of
K~ = 7.7 MJ/m is obtained; the spin-wave energies are

E+ (q) = 6.7 meV + 13.7 meV A q2,

E (q) = 0.82 meV + 132.8 meV A q,
and the energy of the localized excitation is A~ ——6.1
meV. The short-dashed line in Fig. 3 corresponds to this
fit. The value of the gap energy Eo is not very sensitive
to the variation of nRT in the present case and there-
fore we have chosen the value of n~T which leads to the
same curvature as the experimental curve. To summa-
rize, our analysis suggests a strong temperature depen-
dence of n~T having at room temperature approximately
one-fourth of its low-temperature value. Final conclu-
sions, however, can be drawn only if the high-energy ex-
citations E+ and A~ are considered as well. Preliminary
experimental results on this pointii show high intensities
of magnetic scattering at energies E ( 15 meV but the
resolution does not allow a detailed interpretation.

C. Rqreq4B at T 0 K

Our model is applied to the R~Feq48 compounds which
exhibit an anisotropy of the easy-axis type at low temper-
atures. The exchange fields and crystal-field parameters
of these compounds have been obtained by analyzing the
high-field magnetization curves of single crystals Th.e
various sets of parameters obtained by these analyses are
referred to as the models Y, G, 2' and R. Using
the results of the di6'erent models, the spin-wave ener-
gies are calculated and compared with recent neutron-
scattering data. ' 2 Up to now for the compounds with
R =Pr, ad, Tb,Dy only neutron-scattering experiments
using powder samples have been performed. Therefore
instead of the dispersion relations E+ (q) only peaks cor-
responding to the flat parts of the dispersion curve could
be observed [Figs. 4(a)—4(d)j. It is assumed that the
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points where these modes are reaching the boundary of
the Brillouin zone. Since within the present paper only
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T(K) 300K 450K

µ0Ms(T) 1.61 1.29
A(pJ/m) 7.7 4.9
K (MJ/m3) 4.3 2.9

Durst 1986



Spin Wave Renormalization induces 10-20% scale-
dependent renormalization of parameters

10-20% renormalization 
of ab initio parameters 
from L= 0.5 nm to 2 nm.  
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Hierarchical nanostructure, developed for Toyota

Nd2Fe14B

Fe-rich grain
boundary phase

Nd-rich grain
boundary phase



Our magnet is in the Toyota Prius

Reuters Feb. 20, 2018

Scaling-correction 
to coercive field
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5. Femtosecond lasers, developed by Mourou and Strickland, 
awarded Nobel in 2018

 



Chirped Pulse Amplification

Gerard Mourou
Donna Strickland
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High precision medical imaging also needed:
Test of relativity provides key

Michelson Morley interferometer, to 
test aether, leading to the Theory of 
Special Relativity (1887)

Optical Coherence Tomography (OCT), 
to provide in-depth images of 
transparent eye tissue (1987-1991) 

Imaging transparent tissue is big challenge for using femto lasers for eye surgery
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Nobel winning femtosecond lasers 
restored the vision of more than a million patients

The LenSx femtosecond laser restored the vision of more than a million patients

Femtosecond laser for precision cutting + 
OCT for unprecedented imaging: the LenSx laser



Five pathways of basic science tools making direct impact 
in renewable energy and medicine

1. Strongly interacting electrons in 
perovskites

Boosting efficiency of energy 
conversion in solar cells

2. Metal-Insulator Transition Improving charge extraction in 
solar cells

3. Quantum glassy dynamics Mitigating performance degradation 
of world record holder Si solar cells

4. Renormalization group and 
scaling

Developing better magnets for the 
electromotor of the Toyota Prius

5. Test of Relativity + Nobel-
winning femtosecond lasers

Creating LASIK and laser cataract 
eye surgery


