3. Quantum Glassy Dynamics in world-record 26% Si PV
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Light-induced defect generation drives performance |
degradation, delays market entry of world-record HIT Si PV
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New degradation channel: Voc Stabler-Wronskii: slow generation
Jordan-Johnston NREL 2018 of light-induced defects:

t13: collective/glassy dynamics?




Hydrogen escapes Si (di-)vacancies, leaves behind

dangling bonds that act as recombination defects for PV
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Defect Dynamics

Photon absorption
creates dangling

bond and H inside |

(di-)vacancy

H escapes vacancy
across barrier,

becomes mobile |

Mobile H
propagates across
isordered energy [
landscape of a-Si

Mobile H eventually
recombines with a
dangling bond,
reduces defect
density

Model defected,
hydrogenated
a-Si absorber

Determine energy
barriers that control
H escape and thus

dangling bond |

formation, and their
distribution

From energy barrier
distribution,
determine
distribution of
timescales, and
time dependent
defect density nye(t)

Determine how the
defect density nye(t)
controls Voc(t):

|:_> (1) Kinetic Monte

Carlo simulation

(2) analytic
calculation




Structure: CHASSM; Barriers: LAMMPS

Best structure generator: CHASSM
(Computational Hydrogenated Amorphous
Structure Maker) code, developed at MIT.

Based on WWW code, developed at UC Davis

More agile code: LAMMPS,
can model atom dynamics




Barrier determination: Nudged Elastic Band

Distribution of Barriers P(E, . ier)
Distribution of Escape times r:
P(T) ~ P(tO exp(Ebarrier/kT))

Barrier = E(green)-E(blue)




Locating defects, capturing escape times
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Escape time statistics, spans 8 decades
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Impact of defect density ny(t) on Voc

Open Crcuit Voltage (V)
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This curve translates the defect density nyg(t)
into a time dependent Voc degradation




Slow defect generation,
control defect density to make HIT Si PV reliable
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4. Renormalization Group helps Permanent Magnet
Development for Toyota Prius
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Rare earth elements are rare

nght and heavy rare earths price = Terbium Oxide 99.9% FOB China - latest 1701
Heavy rare earths - §/kg = Dysprasium Oxide 99% FOB China - latest 955
. —— Cerium Oxide 99%min FOB China - latest 21.5 5000
Ligh rare earths - $/kg ~ Lanthanum Oxide 99% FOB China - latest 20.5
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Hierarchical simulation of reversal
In permanent magnets
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ab initio description
of Nd2Fe14B

— coarser finite
finite element element modeling of
modeling of grain assembly of grains
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Renormalized FEM: Tc becomes realistic

Renormalization/Scaling theory of Micromagnetics
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Grinstein, Koch, PRL, 2003 /

Finite element micromagnetics (FEM)

gets Tc very wrong for classes of materials,
such as permalloy.

Reason: FEM parameters are taken from
microscopic/macroscopic values and only
trivially rescaled to L, the cell size of FEM

|ldea: renormalize the FEM parameters of
cells with size L also with fluctuations of
wavelengths smaller than L: “integrate out
spin fluctuations to length L”

BASH =5 [ a'x(Vs)?
0T/0l = —€T + aT?

/oA

dimensional rescale fluctuations

J



Renormalization/Scaling theory of Micromagnetics

M * b-kT/2nJ
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Renormalization atlow T, in a
limited magnetic field h:

dT(l)/dl = [—e + I(T(]), h(D)]T(1),

dh(l)/dl = 2h(l),

Upper Fig.: FEM simulation of

magnetization with cell sizes L=2, 4,

and 8nm gives size dependent
results.

Lower Fig.: FEM with same L=2, 4,

and 8 nm cell sizes but performed

with renormalized parameters gives

cell-size independent results.

J



Reversal, governed by domain wall-mediated nucleation,
not captured well by spin waves

T=300K
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Reversal governed by fluctuations on
multiple hierarchical scales

t Finite Element
Vi — / today Spin Wave Renormalized,
el scale dependent parameters
‘ / Finite Element
/ today
(0 ) S S
| L
0.5 nm 2-10 nm 500-5,000 nm 107-10°nm
1. Atoms in | 2. Spin waves | 3. Nucleation, 4. Average interactions, | 5. Macroscopic
unit cell in FE cells reversal by Hy=oK-N M
domain walls
Ab initio Analytic/RG Finite Element | Mean field Experiments




Energy [meV}

Spin-Wave Renormalization of
Finite Element Cell Parameters: Nd,Fe ,B
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Spin Wave Renormalization induces 10-20% scale-
dependent renormalization of parameters
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10-20% renormalization
of ab initio parameters
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Hierarchical nanostructure, developed for Toyota J
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Our magnet is in the Toyota Prius

Scaling-correction New Toyota magnet cuts dependence on
to coercive field key rare earth metal for EV motors

Reuters Feb. 20, 2018 ~ ¢

(This February 20 story corrects paragraph 2 to say neodymium is used in permanent magnets, not
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FILE PHOTO: A Toyota Prius (R) and a Prius V are displayed at the North American International Auto
Show in Detroit, January 12, 2016. REUTERS/Mark Blinch/File Photo



5. Femtosecond lasers, developed by Mourou and Strickland,
awarded Nobel in 2018

U.S. Patent Aug. 12, 1997 Sheet 2 of 10 5,656,186
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Chirped Pulse Amplification

Gerard Mourou
Donna Strickland

A pair of gratings disperée -
the spectrum and stretches

/\ / - the pulse by a factor
of a thousand

Short-pulse oscillator

Initial short pulse

The pulse is now long l

and low power, safe

for amplification

B .

High energy pulse after amplification n

Power amplifiers

- J L

Resulting high-energy,
ultrashort pulse

A second pair of gratings
reverses the dispersion of the
first pair, and recompresses the pulse.



High precision medical imaging also needed:
Test of relativity provides key

Imaging transparent tissue is big challenge for using femto lasers for eye surgery
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Michelson Morley interferometer, to Optical Coherence Tomography (OCT),
test aether, leading to the Theory of to provide in-depth images of
Special Relativity (1887) transparent eye tissue (1987-1991)




Nobel winning femtosecond lasers
restored the vision of more than a million patients

Femtosecond laser for precision cutting +
OCT for unprecedented imaging: the LenSx laser

Lens Thickness 3723 um

Post Capsule'7466 um
_Q .......... l‘ _____

The LenSx femtosecond laser restored the vision of more than a million patients
52



Five pathways of basic science tools making direct impact
in renewable energy and medicine

1. Strongly interacting electrons in
perovskites

2. Metal-Insulator Transition

Boosting efficiency of energy
conversion in solar cells

3. Quantum glassy dynamics

Improving charge extraction in
solar cells

J

4. Renormalization group and
scaling

Mitigating performance degradation
of world record holder Si solar cells

|

5. Test of Relativity + Nobel-
winning femtosecond lasers

Developing better magnets for the
electromotor of the Toyota Prius

J

Creating LASIK and laser cataract

eye surgery




