From Femtoseconds to Gigaseconds: The SolDeg Project to Analyze Si Heterojunction Cell Degradation with Machine Learning

I. Degradation in Si-only heterojunctions
II. Experimental degradation study
III. Development of a Machine-Learning
based Si-H interatomic potential
IV. Degradation in c-Si/a-Si:H
heterojunctions

Davis Unruh (UCD – Argonne) Reza Vatan (ASU) Zitong Zhao (UCD) Salman Mazoor (ASU) Andrew Diggs (UCD) Stephen Goodnick (ASU) Mariana Bertoni (ASU) **Gergely Zimanyi (UCD)**

Motivation

1. Si Heterojunction cells hold Si world record efficiency of 26.7%

2. Some groups reported efficiency degradation of 1%/yr, twice the usual. 0.5%/yr was attributed to Voc.

3. Eliminating this 0.5%/yr degradation would have the effect of increasing the efficiency by close to 2% in terms of LCOE, based on the System Advisor Model

D. Jordan et al., IEEE J. of Photovoltaics, 8, 177 (2018)

4. Bertoni: "The defects did it!"

Investigated c-Si/a-Si stacks. Reported strong increase of SRV over 28 months. Attributed it to the increase of defect density at the interface.

the other hand, the modeling reveals that during the 28-month storage period the density of defect states at the interface, N_S, has increased by an order of magnitude, that is $(5.5 \pm 1.5) \times 10^7$ cm⁻². This N_S variation results in a strong SRV Bernardini and Bertoni Phys. Status Solidi A 2018, 1800705

On

I. The SolDeg platform

We developed the SolDeg platform to analyze the formation of defects at the c-Si/a-Si interface This requires

- connecting extreme time scales from femtoseconds to gigaseconds (20 years)
- simulation of large number of large samples with extreme precision
- 1. Create c-Si/a-Si stacks
- 2. Generate shocked clusters at the c-Si/a-Si interface as likely hosts of electronic defects
- 3. Identify shocked clusters that actually host electronic defects
- **4.** Determine the energy barriers that control the generation of these electronic defects
- 5. Determine the distribution of these barriers
- 6. Determine the defect generation from the energy barrier distribution

Extreme Precision by Machine Learning-developed Potentials

1. Create c-Si/a-Si stacks using Molecular Dynamics with Machine-Learning (ML)-developed Si-Si potential: Gaussian Approximation Potential Si GAP.

2. Generate shocked clusters at the c-Si/a-Si interface with "cluster-blaster" as likely hosts of electronic defects

Comparison of GAP with other interatomic potentials.

Connect decades of time scales: Nudged Elastic Band method

3. Identify shocked clusters that actually host electronic defects: IPR

(a) 0.8 DOS DOS ($eV^{-1}cm^{-3}$)/10²² IPR 0.6 3 obilit Gap 0.4 🞽 Conduction Band 0.2 Valence $^{+0.0}_{15}$ 0 5 10 0 E (eV) (b) 1.00Interface 0.75 Defects Interface and 10.50 IPR_k cutoff 0.25 c-S 0.00 100 200 300 400 Atom # (a) IPR as a function of energy, (b) IPR as a function of z-depth

4. Determine energy barriers that control the generation of the electronic defects

5. Determine the barrier distribution

Nudged Elastic Band method to determine energy barriers

Determine and Analyze Dynamics of Defect Generation

6. Determine the defect generation from the energy barrier distribution

Accelerated Superbasin Kinetic Monte Carlo

Accelerated testing by elevated temperature: Quantitative correspondence? Stretched exponential predicts: t(norm) ~ t(acc)^{(T(acc)/T(norm)}

II. Experimental analysis of SHJ degradation

III. For SolDeg for c-Si/a-Si:H – Need Machine-Learning based Si-H GAP

Problem: no Machine Learning-based Si-H (GAP) potential We developed the world's first Si-H Machine Learning-based GAP potential

Machine-Learning based Si-H GAP

IV. Repeat SolDeg for c-Si/a-Si:H with Si-H GAP

1. Created 60 c-Si/a-Si:H stacks.

2. Inserted H to ~500 positions into each of the 60 stacks and measured its energy (blue). This represents 30,000 calculations.

3. Gradient of hydrogen energy creates a force that drives H atoms away from SHJ interface!

4. What created H energy gradient? We measured Si density (red).

5. The Si density gradient correlates with, and likely causes, the hydrogen energy gradient

The Si density gradient across interface creates a force that drives H away from interface, degrading the SHJ cell passivation

How to stop H degradation? NoDeg cells

1. The H energy gradient was created by the Si density gradient.

2. Therefore, we expect that if we create a minimum for the Si density at the interface, the H energy gradient can be changed into an H energy valley, stabilizing the passivation.

3. We created 60 new c-Si/a-Si:H stacks where the Si density had a minimum at the interface. Again measured the H energy at 30,000 positions. Found that the H energy gradient has been eliminated!

Creating a Si density minimum at the interface preserve the H passivation at the interface.

Possibly relevant experiments

"Surface passivation at the a-Si:H/c-Si interface is significantly improved by using an intrinsic a-Si:H bilayer, i.e., a stack of an interfacial layer with a large R* and an additional dense layer"

SUMMARY

- **1.** Developed SolDeg platform to analyze defect dynamics that bridges 24 orders of magnitude in time
- 2. In Si-only SHJs found that defect generation follows a stretched exponential
- 3. Discovered scaling law of accelerated testing: t(norm) ~ t(acc)^{(T(acc)/T(norm)}
- 4. Reported experimental analysis of SHJ degradation
- **5.** Developed Machine-Learning-based Si-H GAP potential for most accurate Molecular Dynamics simulation of c-Si/a-Si:H SHJs with many thousands of of atoms
- 6. Performed SolDeg simulation of c-Si/a-Si:H SHJs
- 7. Determined H energy that drives H away from SHJ interface, thereby degrading the cell passivation
- 8. Proposed modified SHJ architecture where the H-drift degradation channel is blocked
- ACS Applied Materials & Interfaces 2021, 32424
- arxiv 2106.02946 submitted to Phys. Rev. Mat.
- To be submitted this week